
BIRZEIT UNIVERSITY

FACULTY OF GRADUATE STUDIES

EFFICIENT ELLIPTIC CURVE CRYPTOSYSTEMS

 USING EFFICIENT EXPONENTIATION

by

Kamal Darweesh

A Thesis Submitted in Partial Fulfillment of the Requirement for the

Master Degree in Scientific Computing From the Graduate

Faculty at Birzeit University

Supervisor

Professor Mohammad Saleh
 Department of Mathematics

Birzeit, Palestine
August, 2006

 II

EFFICIENT ELLIPTIC CURVE CRYPTOSYSTEMS

 USING EFFICIENT EXPONENTIATION

by

Kamal Darweesh

This thesis was successfully defended on August 3, 2006 and approved

by:

 Committee Members Signature

 1. Professor Mohammad Saleh .…………….

 2 Associate Professor Hasan Yousef .…………….

 3. Associate Professor Wasfi El Kafri .…………….

 III

ABSTRACT

The explosive growth in the use of mobile and wireless devices demands a public

key cryptosystem (PCK) achieving aspects of information security with

accommodate limitations on power and bandwidth, at the same time keeping with

high level of security.

Elliptic curve cryptosystem (ECC) are new generation of public key

cryptosystems that has smaller key sizes for the same level of security. The

exponentiation in elliptic curve is the most important operation in ECC, So when

put the ECC into practice, the major problem is how to enhance the speed of the

exponentiation. It is thus of great interest to develop algorithms for

exponentiation, which allow efficient implementations of ECC.

In this thesis, we improve efficient algorithm for exponentiation on elliptic

curve defined over Fp in terms of affine coordinates. The algorithm computes

()2 1n n2 2 P+Q directly from random points P and Q on an elliptic curve, without

computing the intermediate points. Moreover, we apply this algorithm on

exponentiation on elliptic curve with wMOF and analyze their computational

complexity. This algorithm can speed the wMOF exponentiation of elliptic curve

of size 160-bit about (21.7 %) as a result of its implementation with respect to

affine coordinates.

 IV

 ا=>;:9

Ta\;هC\^_D IBW\? `\a W اM<\[=\;م اM اX<M<;ح<WNXYاM أI RKS>B I<TUواNOK?PM اIBJKLM اCFGHةCDاAB ا?<=>;ل

 .ea اX>op;ظ J>i<mى a]M;k` اIBWiM اCFGHة<M jK واAhaI=iMودIB اJfMة P>D eaءمو اaJK=<M;ت

 A=DI<TUأ WNXY>Mا qKk _h_<Mتا;N IN^NKهrا PNG اABAG أ `a TU ;FM]>Mم وا;=Mح ا;>X<Mا WNXY>Mا I< ح;>Xa

 اI\<TU WNXY\>M أI\NK<k]\y أه\x هI\N^NK اr اN_h_<M\;ت IN?qKk اINK<=M اH ن إ . J>iaى اo stuX_M IBWiM^>; أ

qKk ت;N_h_<Mا rاIN^NKه jMzM ، ̀ <OD A_k INi\N|WMا IKOY\<Mا }\N~SD Hا j\KD I\<TU]\y \D I\NXNآ I\NK<=Mا eBWi

HاIN\\?،اz\\M أ إن `\\a x\\ته;\\a;<>هpا WBJ\\SD J\\قهW\\� و �<i\\D ت;\\NaارزJ� z\\NX_>m أI\\<TUWNXY\\>Mا q\\Kk

h<Mت ا;NrاN^NKهIKk;Xm NI.

 �zه]y ،IM;?WMا JS>m ;_<t Hا I\NK<=Mب ا;i\hM IM;=y IfBW� WB IN\? q\Kk_h_<Mت ا;\Nrا \N^NKهI q\Kk I\yW=<Mا

Mاsfh]F>_<Mت ا;Nا�Aorام اAL>?;m ةA\a;=><Mا INDر;OBAMا. >i\D I\NaارزJLMا �z\ه eNS ب;i\o2
م

) 2
 ن

) ب+ أ

̀ ، ب N>SfU` أ W�;~a `aة N>N|اJYk rت ا;N_h_<Mا qKk IN^NKون هAmو ، INS\?JMط ا;f_Mب ا;io، و Iy;\�r;m

 jMذ qMإ rت ا;N_h_<Mا qKk IN?Hا INK<=Mب ا;io sGأ `a INaارزJLMا �zه }N~S>m ;_<t I\N^NKه s\NKhDو

 jKF>i<Mا �tJMى اAa . \Mد AfM I\NaارزJLMا �z\ه z\NX_D A_k �|;\>_Mا � IN\?Hا I\NK<=Mا eBWi\D eNS>i\D ;\FUأ

160�Xa z<;ح qKk x^hm اN_h_<M;ت اrهA_k IN^NK أ-]MاJo �m 21.7. %

 V

ACKNOWLEDGMENTS

I would like to thank Dr. Mohammed Saleh, my supervisor, for his many

suggestions and constant support during this research. I would also like to thank

my committee members, Dr. Wasfi El Kafri and Dr. Hasan Yousef, for their

valuable comments on my thesis.

I am grateful to my parents and my wife for their patience and love. I would

like to thank my colleagues who also gave me valuable comments on my research.

 VI

CONTENTS

Abstract II

Acknowledgments III

List of Algorithms VII

List of Figures VIII

List of Tables IX

List of Abbreviations X

List of Symbols XI

1 Introduction 1

2 Elliptic Curves 10

2.1 Weierstrass Equations...10

2.2 The Group Law...17

2.3 Addition Formulas ..20

2.4 Elliptic Curves over Finite Fields ...26

2.5 Counting the number of points ...30

2.6 Discrete Logarithm Problem for Elliptic Curves31

2.6.1 Known Algorithms ..32

2.6.2 Weak Curves…… ..33

2.7 Optimizing ECC Implementations..33

2.7.1 Domain Parameters..34

2.7.2 Coordinate Systems ...37

2.7.3 Exponentiation ….. ..38

3 Elliptic Curve Exponentiation 39

 VII

3.1 Base-2 Representations of Integers...39

3.1.1 Signed Binary Representation ...41

3.2 Algorithms for Elliptic Curve Exponentiation..43

3.2.1 Binary Methods….44

3.2.2 Sliding Window applied on NAF ..49

3.2.3 The width-w Non Adjacent Form (wNAF)....................................52

3.2.4 The width-w Mutual opposite Form (wMOF)54

4 Contribution of This Thesis 63

4.1 Direct Computation of 2 1n n2 (2 P +Q) in affine coordinate63

4.1.1 The Break-Even Point..71

4.2 Exponentiation with Direct Computation of 2 1n n2 (2 P +Q)73

4.2.1 Complexity Analysis of the wMOF Method74

4.3 Implementation and Results..78

4.3.1 Elliptic Curves domain parameters and Platforms78

4.3.2 Timings analysis of wMOF Exponentiation Method...................79

5 Conclusion 83

Appendix A Mathematical Background 85

A.1 Basic Algebra..85

A.2 Projective Space..87

Appendix B 89

B.1 Recommended NIST Elliptic Curves over Prime Fields89

B.2 Complete Java code..90

Bibliography 100

 VIII

LIST OF ALGORITHMS

 3.1 Generation of NAF ..43

 3.2 Right-To-Left Binary Method ..44

 3.3 General Right-To-left Binary Method ..45

 3.4 Left-To-Right Binary Method ...46

 3.5 General Left-To-Right Binary Method ...47

 3.6 Sliding Window applied on NAF ..51

 3.7 Generation of wNAF ..52

 3.8 Exponentiation with wNAF ..53

 3.9 Generation MOF from Binary ..56

 3.10 Generation wMOF from MOF ..57

 3.11 Table Computation with Width w ...60

 3.12 Exponentiation with wMOF ..61

 4.1 Direct Computation of 2 1n n2 (2 P +Q) in affine coordinate, where n1 ≥ 1,

 and P, Q ∈ E(Fp) . ..68

 4.2 Exponentiation with wMOF Using Direct Computation of 2 1n n2 (2 P +Q) 73

 IX

LIST OF FIGURES

 1.1 Secret-key schemes...2

1.2 Diffie-Hellman Key Exchange protocol ..3

 1.3 Asymmetric schemes ...4

 2.3 Doubling point P on E ...28

 4.1 Pre-compute and evaluation with 160-bits input ...80

 4.2 Pre-compute and evaluation with 192-bits input ...80

4.3 Pre-compute and evaluation with 224-bits input ...81

4.4 Pre-compute and evaluation with 256-bits input ...81

 X

LIST OF TABLES

 2.1 Points of E over field F23 ..28

2.2 The computational complexity of affine and projective coordinate systems.38

 3.1 The values of X, Q during the iterations of right-to-left binary method45

 3.2 The value of Q during the iterations of left-right binary method47

3.3 General comparison of table size and non-zero density59

 4.1 Complexity comparison: Individual doublings and one addition vs. direct

computation of several doublings with one addition.72

 4.2 The ratio of speed between a multiplication and inversion in prime filed Fp79

 4.3 Comparison of add-double method vs. wMOF method to perform an

exponentiation...82

 4.4 Average time comparison required to perform an exponentiation without pre-

computations stage of a random point in mesc (Pentium IV 2.0 GHz).82

 XI

LIST OF ABBREVIATIONS

AHd Average Hamming density.

DLP Discrete Logarithm Problem.

DECDBL (w) Direct computing of point addition adjoint with w doublings

ECC Elliptic Curve cryptosystem

ECADD Elliptic Curve Point Addition.

ECDBL Elliptic Curve Point Doubling.

ECDH The Elliptic Curve Diffie-Hellman Key Exchange

ECDLP Elliptic Curve Discrete Logarithm Problem.

ECDSA The Elliptic Curve Digital Signature Algorithm

Hd Hamming density.

Hw Hamming weight.

MOF Mutual opposite Form.

PCK Public key cryptosystem

SW Sliding window

wNAF Width-w Non Adjacent Form.

wMOF Width-w Mutual Opposite Form.

 XII

LIST OF SYMBOLS

A Affine coordinates.

t Bit length of an exponent.

k Exponent, i.e. a positive integer.

ki The i-th bit of the exponent k, i = 1, . . . , n.

x -x, where x is an integer.

D Digit set.

D* Digit set without zero.

|D| The order of the digit set.

χ Class of D-representations.

M Field multiplication.

S Field squaring.

I Field inversion.

F Field

Fq The field with q elements

Fp Prime finite field

F2m Binary finite field

E(Fq) Additive group of points on an elliptic curve over finite field Fq

P Projective coordinates

#E(Fq) The number of points on E over finite field Fq

 XIII

 1

CHAPTER 1

1 Introduction

Cryptography is the science of securely transmitting messages from a sender to a

receiver. So the need of cryptography is on the increase, it enable people to

communicate securely. People interact electronically, through e-mail, e-

commerce, ATM machines, or mobile. A cryptosystem is a system of algorithms

for encrypting and decrypting messages for this purpose. Many of modern

cryptosystems have been proposed to achieve aspects of information security as

confidently, data integrity, authentication, and non-repudiation.

1. Data integrity: service guarantees that the content of the message, that was

sent, has not been tampered with.

2. Confidentiality: service protects against unauthorized disclosure of the

information.

3. Authentication: service related to identification, and consists of two

components data origin and entity authentication.

4. Non-repudiation: service protects against denial by one of the entities

involved in a communication of having participated in all or part of the

communication.

In order to obtain these aspects of information security, cryptographers have

developed a toolbox of cryptographic primitives such as encryption schemes and

digital signature. These primitive called cryptographic schemes and are also so-

called cryptosystems [32].

 2

The purpose of encryption schemes is to cover confidentiality of encrypting

the message. This is done by an encryption function E. The reverse process, the

decryption, is done by a decryption function D. Besides the message m, the

encryption function requires the input of an encryption key e. It returns the

encrypted message, the ciphertext c. The ciphertext and a decryption key d are

the input for the decryption function which returns the original message, the

plaintext. The respective formulas are given as

 Ee(m) = c , Dd(c) = m

There are two mainly different approaches to encrypt messages: symmetric

schemes, and symmetric schemes.

In symmetric schemes encryption and decryption are performed using the

same secret key. This method is known as secret key or symmetric cryptography.

Suppose Alice wishes to securely communicate some plaintext to Bob. She

generally accomplishes this by applying an encryption function E to the plaintext,

obtaining ciphertext. Bob must have the inverse function D, and it should not be

easy for an eavesdropper to recover the plaintext from the ciphertext.

Figure 1.1 Secret-key schemes

While the encryption and decryption with symmetric schemes is very fast, it

has drawback, namely the key-exchange between communicating parties. When

 Alice Bob
 key kkkk key kkkk

 Plaintext Ciphertext c
 Plaintext
 m m

E D

 3

the sender and the receiver are physically apart, they want to agree on the secret

key without anyone else finding out. Then they must share a secret key through

secure channel. Consequently, in a large system many secret keys must typically

be generated, stored, managed, and destroyed in a highly secure way. If, for

example, n entities want to securely communicate with each other, then there are

n(n-1)/2 secret keys that must be generated, stored, managed, and destroyed.

Another approach to agree on secret key between two parties is using a trusted

third party to prevent the disclosure of the secret key. Unfortunately, this method

has many disadvantages. The most important disadvantage is that each entity

must unconditionally trust the of third party and share a secret key with it. There

are situations in which this level of trust is neither justified nor can be accepted by

the communicating entities.

In 1976 Whitfield Diffie and Martin Hellman [8] published their paper “New

Directions in Cryptography” and proposed the Diffie-Hellman (DH) key

Exchange protocol [8] which allows users to exchange secret keys over an

insecure channel without any prior shared secret. This paper resolves the key-

exchange problem and becomes the theoretical concept of asymmetric schemes.

Figure 1.2 Diffie-Hellman Key Exchange protocol

1. Alice and Bob agree on some finite group G and an element g ∈ G.

2. Alice privately chooses an integer a ∈ {1,…|g|}, and computes

 α = ga. She sends α to Bob

3. Bob privately chooses an integer b ∈{1,…|g|}, and computes

 β = gb. He sends β to Alice.

4. Alice and Bob can both compute

k = gab = (ga)b = (gb)a as common secret key.

 4

In a asymmetric schemes, each user gets a pair of keys: private key for

decryption which is kept secret, and public key for encryption which can be made

public for that reason asymmetric schemes are also referred to as public-key

schemes. It is computationally infeasible to deduce the private key from the

public key. Anyone who has a public key can encrypt information but cannot

decrypt it. Only the person who has the corresponding private key can decrypt the

information.

Figure 1.3 Asymmetric schemes

Digital signature schemes work similar to asymmetric schemes, namely they

are based on a complex mathematical problem. They are designed to provide the

digital counterpart to handwritten signatures to provide data integrity, data origin

authentication, and non-repudiation. A digital signature is generated based on the

content of the message being signed and some secrets known only to the signer

including the private key and the signing key. It must be verifiable by any user in

the system without accessing the signer's secret information.

There are only three classes of public key cryptosystems that are considered to

be both secure and efficient. They are classified below according to the

mathematical problem on which they are based [1].

 Alice Bob
 Bob’s Public key Bob’s private key

 Plaintext Ciphertext c Plaintext
 m m

E D

 5

1. Integer factorization systems: security is based on the intractability of the

integer factorization problem (IFP). Examples include RSA and Rabin

signature schemes.

2. Discrete logarithm systems: security is based on the intractability of the discrete

logarithm problem (DLP) in a finite field. Examples include ElGamal, and

DSA.

3. Elliptic curve discrete logarithm systems: security is based on the intractability

of the elliptic curve discrete logarithm problem (ECDLP). Examples include

Elliptic Curve Digital Signature Algorithm (ECDSA).

Elliptic curve cryptosystem ECC is new generation of public key

cryptosystem that is based on the difficulty of ECDLP. ECC has advantage over

the systems which are based on the multiplicative group of a finite field (Fq). As a

result, the fastest algorithm known for solving the discrete logarithm systems DLP

in the multiplicative group (Fq) is index-calculus method which solves the DLP in

sub-exponential time [18], and the best known algorithm for solving the ECDLP

in this group is Pollard-rho algorithm, it takes about
2

n π steps, where a step

here is an elliptic curve addition, n is the number of elliptic curve points, these

steps takes full exponential time [2][18][19]. Consequently, one can use an

elliptic curve group that is smaller in size with the same level of security

maintained. The outcomes are smaller key sizes, bandwidth savings and faster

 6

implementations. Such characteristics are particularly attractive for security

applications where computational power and integrated circuit space are limited.

The elliptic curve cryptographic operations like encryption/decryption,

schemes generation/verification signature require computing of exponentiation on

elliptic curve. The computational performance of elliptic curve cryptographic

protocol such as Diffie-Hellman Key Exchange protocol strongly depends on the

efficiency of exponentiation, because it is the costliest operation. Thus it is very

attractive to speed up of exponentiation, which allow for efficient

implementations of elliptic curve cryptosystems.

Three are three ways to speed up of exponentiation: choosing optimal

underlying field, on which modular reduction is efficient or on which inversion is

efficient, reducing the number of additions, and reducing the number of

multiplications and squirings of underlying field by using efficient point

coordinate system or mixed coordinate systems [7].

There are two mainly types of elliptic curve exponentiation algorithms of the

second way: algorithms for a fixed point, and algorithms for a random point.

These algorithms can compute elliptic curve exponentiation by repeating

additions and doublings, where the repeated number of additions can be reduced

by a suitable algorithm, but that of doublings can not be reduced.

1. Exponentiation algorithms for a fixed point: compute an elliptic curve

exponentiation by repeating only additions and no doubling. In this case, the

precomputation table method [10] is useful.

 7

2. Exponentiation algorithms for a random point: compute an elliptic curve

exponentiation by repeating additions and doubling. In this case, the addition-

subtraction method is usually mixed with the window method [10][20][18][26].

The binary method is the standard algorithm for computing exponentiation in

the case of a random point. It based on the binary representation of the exponent,

the elliptic addition point is performed if scanned bit of exponent is one and

doubling of elliptic point is performed regardless of scanned bits, so this method

also so-called add-double. It can scan the bits of exponent from left to right or

from right to left, and can be generalized to use base-2 representation. So the

average number of addition of elliptic points operations required by the binary

method or the general binary method depends on the minimal hamming weight of

the exponent. Here, the fact that points on an elliptic curve can be inverted at

negligible costs proved very useful, namely the effort for precomputing the

required points can be reduced by more than 50%, if the exponent is represented

in a signed representation.

There are several base-2 representations which have minimal hamming weight,

namely the Width-w Non Adjacent Form (wNAF) and siding window on some

signed binary representations. While those representations speed up the

exponentiation in the best possible way. The generation of the wNAF and the

recoding of signed binary digits for sliding window are only possible starting at

the least significant bit, i.e. right-to-left. Therefore, the recoding of the n-bit

exponent must be performed in a separate stage and the whole recoded exponents

 8

must be stored, which requires memory of the order of magnitude of n bits for

both base-2 representations.

 This problem is solved by using base-2 representation Width-w Mutual

Opposite Form (wMOF) which provides the same minimal hamming weight of

exponent as the wNAF. Their great advantage is, that they can be generated from

left-to-right which means, that the recoding doesn’t have to be done in a separate

stage, but can be performed on-the-fly during the evaluation. As a result, it is no

longer necessary to store the whole recoded exponent, but only small parts at once.

In detail, the wMOF requires only memory of the order of magnitude of w bits,

which is very small compared to n-bits.

Another approach to speed up exponentiation is by increasing the speed of

doublings. One method to speed the doublings is direct computation of several

doubling, which computes 2nP directly from P ∈ E(Fq), without computing

intermediate points 2P,22P,…,2n-1. Sakai and Sakurai [28] proposed formulae for

computing 2nP directly (∀n ≥1) on E(Fp) in terms of affine coordinates. Since

modular inversion is more expensive than multiplication, this formula requires

only one inversion for computing 2nP instead of d inversions in regular add-

double method.

In this thesis, first we derive formula to compute ()2 1n n2 2 P+Q directly from

P, Q ∈ E(Fp), without computing intermediate points 1n22P,2 P, ,2 PL ,

1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q)L −−−− , where n1≥1. Secondly, we use this formula to

improve evaluation stage for computing exponentiation with wMOF method.

 9

Furthermore, we show in what way this new derived formula can improve the

speed of the exponentiation with wMOF. A comparison was made based on

notation of a "break even point" which is the cost factor of one inversion

relatively to the cost of one multiplication.

This thesis is organized as follows: Chapter 2 gives background on elliptic

curve and discuses their various properties. Chapter 3 presents base-2

representation of integer and introduces algorithms for the efficient computation

of elliptic curve exponentiation. Those were the binary and the general binary

methods which use minimal hamming weight signed representations of the

exponent, namely the wNAF, siding window on some applied on NAF and

wMOF which left to right minimal hamming weight representation. Finally

derived formula for direct computation of several doubling of elliptic points in

affine coordinates is presented. Chapter 4 presents new formula for computing

()2 1n n2 2 P+Q directly from P, Q ∈ E(Fp), without computing intermediate

points 1n22P,2 P, ,2 PL . Chapter 4 also shows in what way this formula can

improve the speed of the exponentiation with wMOF. Finally Chapter 5 provides

concluding remarks and discussion.

 10

CHAPTER 2

2 Elliptic Curves

Elliptic curves were found as a result of studying the problem of the arc length of

an ellipse. To compute the arc length one integrates a function

involving y = f(x) , and the answer is given in terms of certain functions on

“elliptic” curve 2y = .f(x)

More recently, elliptic curves have been used in devising efficient algorithm

for factoring integers and for primality proving. In mid 1980’s, Koblitz and

Miller independently proposed the use of a group of points of elliptic curves,

defined over a finite field, to be used for cryptographic purpose [2].

First we must to discuss elliptic curves and their various properties.

2.1 Weierstrass Equations

Let F be a field. Consider the following homogeneous cubic equation, called the

Weierstrass equation:

 2 3 3 2 2 3
1 3 2 4 6Y Z + a XYZ + a Y Z = X + a X Z + a XZ + a Z , 1 6a , ,a K.∈∈∈∈K (2.1)

Now consider the polynomial K(X, Y, Z) defined to be the left hand side of

(2.1) minus its right hand side. Let F be the algebraic closure of F, and let

{{{{ }}}}2E = [X, Y, Z] (F) K(X, Y, Z) = 0 .∈∈∈∈P (2.2)

 11

E is called the projective curve defined by Weierstrass equation, and the number

of points on E (the cardinality) is denoted #E(F).

Definition 2.1 Let a plane projective curve E, an element [X, Y, Z] ∈ E for

which

K K K
(X,Y, Z), (X,Y, Z), (X,Y, Z) (0,0,0)

X Y Z

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂    
====    ∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂    

 (2.3)

is called a singular point, and E is said to be smooth, or non-singular curve if

there are no singular points in E.

Definition 2.2 An elliptic curve over the field F, is a smooth curve E defined by

an Weierstrass equation in the form of (2.1).

Definition 2.3 Let E be an elliptic curve over the field F defined by an

Weierstrass equation in the form of (2.1). Let F be the algebraic closure of F, we

define the set E(F) of F -rational points as follows:

{{{{ }}}}2E(F) = [X, Y, Z] () K(X, Y, Z) = 0 .∈∈∈∈P F (2.4)

When we just write E we mean the set of F -rational points, i.e. E =E() F (all

the points on the curve)

Recall from Appendix A.2 that 2 ()P F is a disjoint union of 2 ()A F and the

line at infinity; let's study the intersection of E with each such piece. First we to

study the intersection of E with line at infinity i.e. when the condition Z = 0 holds

in addition to the equation which defines E.

 12

If K(X, Y, Z) = 0 is an equation defining an elliptic curve over F, then we see

from (2.1) that

K(X, Y, Z) = 0 ⇔ X3 = 0 ⇔ X= 0,

 and Y is allowed to be anything. Thus, E intersects the line at infinity in the

points [0, Y, 0], however, since Y ≠ 0, these are all (by the equivalence relation)

the same point [0, 1, 0]. So, E intersects the line at infinity in the single point Ο =

[0, 1, 0].

Now, to study the intersection of E with 2 ()A F , we need to see what happens

when Z ≠ 0. Every element [X, Y, Z] ∈ 2 ()P F for which Z ≠ 0 has a unique

representative [x, y, 1], where x = X
Z

 and y = Y
Z

.

Dividing the original equation for E by Z3, we get

 64
2

2
3

31
2 a xa xa x y a xy a y +++=++ 1 6a , ,a F.K ∈∈∈∈ (2.5)

which is an equation in only two variables. This is Weierstrass non-homogeneous

equation, and leads to the affine representation of E.

Now consider the polynomial f(x, y) defined to be the left hand side of (2.5)

minus its right hand side. We define the set of F -rational points

{{{{ }}}}2E(F) = (x,y) () f(x, y) = 0 U∈∈∈∈A F {Ο } (2.6)

Definition 2.4 Let E be a curve given by a non-homogeneous Weierstrass equation

(2.6). Define the quantities

2
2 1 2d = a + 4a

4 4 1 3d = 2a + a a

 13

2
6 3 6d = a 4a++++

2 2 2
8 1 6 2 6 1 3 4 2 3 4d = a a + 4a a - a a a + a a - a

2 3 2
2 8 4 6 2 4 6= -d d - 8d - 27d + 9d d d∆

2
4 2 4c = d - 24d

3
4 = c /j(E) ∆

The quantity ∆ is called the discriminant of the Weierstrass equation, while j(E)

is called the j-invariant of E if ∆≠ 0.

Theorem 2.5 The curve E is nonsingular (that is, it’s an elliptic curve) if and only

if ∆≠ 0

For a proof of the above theorem, see [9].

For fields F with various characteristics, we can transform the Weierstrass

equation (2.5) into different forms of equations of an elliptic curve E by using

linear change of variables. We split it into 3 cases: char(F) ≠ 2,3, char(F) = 3 and

char(F) = 2. The corresponding admissible change of variables will be given in

each case.

1. char(F) ≠ 2,3:

If char(F) ≠ 2, and the change of variables

1 3a x a
2
++++

→ −→ −→ −→ −y y

is performed, then the left side of (2.5) after the substitution for y becomes:

1 3a x a 2
2

(-)
++++

y + a1x(y - 1 3a x a
2
++++

) + a3(y - 1 3a x a
2
++++

) = . . .

 14

 · · · = y 2 -
2 2
1a

4

x
- 1 3a a

2

x
-

2
3a

4

Both, xy and y have vanished, so their coefficients a1 and a3 must equal zero.

That reduces the left side to a single y2, and (2.5) becomes:

y2
 = x3

 + a2x
2 + a4x + a6 (2.7)

Further, if char(F) ≠ 3, and the change of variables

2a
3

−−−−x x→

is performed, then the right side of (2.5) after the substitution becomes:

 (2a
3

−−−−x)3 + a2(2a
3

−−−−x)2 + a4(2a
3

−−−−x) + a6 = . . .

 . . . = x3 + 2
4

a
(+ a)

9
x + 2

27
3
2a - 1

3
a2a4a6

Setting (1
9

a2 + a4) = a, and 2
27

3
2a - 1

3
a2a4a6 = b, we have shorter form of

Weierstrass non-homogeneous equation:

y2
 = x3

 + ax + b (2.8)

Recall from theorem 2.5, the curve E is nonsingular or smooth if and only if

∆≠ 0. For Weierstrass equation of the form (2.8), we have d2 = 0, d4 = 2a, d6 = 4b,

d8 = -a2, c4 = -48a, c6 = -864b, and ∆ = -16(4a3 + 27b2). Therefore E is smooth if

and only if (4a3 + 27b2) ≠ 0 .

2. char(F) =3:

If a2 ≠ 0, and the change of variables

 4

2

a
a

++++→x x

is performed, then the right side of (2.7) after the substitution becomes:

 15

(4

2

a
a

++++x)3 + a2(4

2

a
a

++++x)2 + a4(4

2

a
a

++++x) + a6 = . . .

 . . . = x3 + a2
2x +

2 2 3 3
2 4 2 4

3
2

a a a a
a
+ ++ ++ ++ +

Setting a2 = a, and
2 2 3 3
2 4 2 4

3
2

a a a a
a
+ ++ ++ ++ +

 = b, we have Weierstrass non-homogeneous

equation of the form:

y2
 = x3

 + ax
2 + b (2.9)

If a2 = 0, then by setting a4 = a, and a6= b from (2.7), we immediately have the

same form (2.8)

3. char(F) =2:

Case 1. The supersingular case, j(E) = 0, i.e. a1 = 0:

When the change of variables

 2a++++→x x

is performed, then left side of (2.5) becomes:

 y2 + a3y

and the right side of (2.5) after the substitution becomes:

(2a++++x)3 + 2a (2a++++x)2 + 4a (2a++++x) + 6a = . . .

 . . . = x3 + 2
4 2(a a)++++ x + 2 3

2 2 4 2a a a a+ ++ ++ ++ +

Setting a3 = a, 2
4 2(a a)++++ = b, and 2 3

2 2 4 2a a a a+ ++ ++ ++ + = c, we have Weierstrass non-

homogeneous equation of the form:

 y2 + ay = x3
 + bx + c (2.10)

Case 2. The nun-supersingular case, j(E) ≠ 0, i.e. a1 ≠ 0:

 16

When the change of variables

3

1

a2
1 a

a ++++→x x

is performed, then (2.5) after the substitution for x becomes:

 y2 + a1(3

1

a3
1 a

a ++++x)y + a3y = 3

1

a3 3
1 a

(a)++++x + a2
3

1

a3 2
1 a

(a)++++x + a4
3

1

a3
1 a

(a)++++x + a6 (2.11)

After the simplification, (2.11) becomes:

y2 + 3
1a xy= 6

1a 3
x + 3 4

1 3 2 1(a a a a) 2
+ x + 2 2

3 4 1(a a a)+ x +
3 2 2 3
3 3 2 1 4 3 1 1 6

3
1

a a a a a a a a a

a
()

+ + ++ + ++ + ++ + +
(2.12)

Now if the change of variables

2 2
3 1 4 3
1 3

1

a a a

a
a

++++
→ +→ +→ +→ +y y

is performed, then the left side of (2.12) after the substitution for y becomes:

2 2
1 4 3

3
1

a a a3 2
1 a

(a)
++++

++++y +
2 2
1 4 3

3
1

a a a3 3
1 1 a

a (a)
++++

++++x y y =. . .

 . . .= 6
1a 2y

 + 6

2 2 2
1 4 3

1

)(a a a

a

++++
 + 6

1a xy + 2 2
3 4 1(a a a)+ x

Finally (2.12) after the divide by 6
1a becomes:

y2 + xy= 3x + 3 2 1
3
1

(a a a)

a

2+
x +

3 3 2 4 5 6 2 2 2()
1 3 3 2 1 4 3 1 1 6 1 4 3

12
1

()
a a a a a a a a a a a a a

a

+ + + − ++ + + − ++ + + − ++ + + − +
 (2.13)

Setting 3 2 1
3
1

(a a a)

a

+
 = a, and

3 3 2 4 5 6 2 2 2()
1 3 3 2 1 4 3 1 1 6 1 4 3

12
1

()
a a a a a a a a a a a a a

a

+ + + − ++ + + − ++ + + − ++ + + − +
 = b, we

have Weierstrass non-homogeneous equation of the form:

 y2 + xy = x3
 + ax

2 + b (2.14)

 17

2.2 The Group Law

In what follows, we shall define the operation of addition in the group of points on an

elliptic curve E over a field F.

Let E be an elliptic curve given by the Weierstrass equation (2.5) to add two

points on the curve P and Q together, pass a straight line through them and look

for the third point of intersection with the curve, R. Then reflect the point R over

the x-axis to get –R, the sum of P and Q. Thus, P + Q = –R. The idea behind this

group operation is that the three points P, Q, and R lie on a common straight line,

and the points that form the intersection of a function with the curve are

considered to add up to be zero as in Figure 2.1. If P = Q then the line to be

constructed is the tangent of E at P, and P + Q =2P as in Figure 2.2.

.
Figure 2.1 Elliptic curve point addition

P

Q
R

-R= P+Q

 18

Now we want to define the identity element of E, Therefore, we find an extra

point of intersection where E meets the line connecting P,Q and the point at

infinity Ο, and call this point P + Q. By joining Ο to a point R on E, we mean

that a vertical line is drawn through P, Q. Hence, the point at infinity Ο is the

additive identity element and P + Q + R = Ο or P + Q = -R, (the inverse of R).

Now we want to define the inverse of a point P= (x1, y1) ∈ E. Let P= (x1, y1),

Q=(x2,y2) ∈ E. Notice, that if x1 = x2 then

2 2
1 1 1 1 3 1 2 1 1 2 3 2y + a x y + a y = y + a x y + a y ,

and hence either

y1 = y2 i.e. P = Q

or

y2 = -y1 - a1x1 - a3

Figure 2.2 Elliptic curve point doubling

R

-R =2P

P

 19

Now define the inverse -P of the point P thus:

-P = (x1, -y1 - a1x1 - a3).

From the previous definitions it follows that:

For all P, Q ∈ E,

1. Ο + P = P and P + Ο = P. That is, Ο is the identity element.

2. -Ο = Ο

3. If P = (x1, x2) ∈ Ο, then -P = (x1 , -y1 - a1x1 - a3).

4. Q = -P, then P + Q = Ο.

5. If P ≠ Ο; Q ≠ Ο , Q ≠ -P, then let R be the third point of intersection

(counting multiplicities) of either the line which intersects P and Q if P ≠

Q, or the tangent line to the curve at P if P = Q, with the curve. Then P +

Q = -R.

6. P + Q = Q + P.

Now we can prove that the above rules make the points on an elliptic curve

into an (abelian) group. The only group law that is not an immediate consequence

of the geometrical rules is the associative law. It can be proved with following

proposition

Proposition 2.6 Let L1, L2, L3 be three lines that intersect a cubic curve in nine

points P1, . . . , P9 (counting multiplicity) and let 1L′′′′ , 2L′′′′ , 3L′′′′ be three lines that

intersect the cubic curve in nine points Q1, . . . ,Q9. If Pi = Qi for i = 1, . . . , 8, then

also P9 = Q9.

The six lines are set as follows

L1 : the line through P,Q and -(P +Q)

 20

L2 : the line through R,-R and Ο

L3 : the line through -P,-(Q+R) and S = P +(Q+R)

1L′′′′ : the line through Q, R and -(Q+R)

2L′′′′ : the line through P,-P and Ο

3L′′′′ : the line through -(P +Q),-R and S′′′′ = (P + Q) +R

Now the lines L1, L2, L3 and 1L′′′′ , 2L′′′′ , 3L′′′′ have eight points of intersection in

common, namely P,-P,Q,R,-R,-(P + Q),-(Q + R) and Ο. One can therefore

conclude that S = S′′′′ which proves the associativity.

2.3 Addition Formulas

Let P and Q be two distinct rational points on elliptic curve E. The straight line

joining P and Q must intersect the curve at one further point, R, since we are

intersecting a line with a cubic curve. The point R will also be rational since the

line, the curve and the points P and Q are themselves all defined over F. If we then

reflect R in the x-axis, we obtain another rational point which we shall call P + Q as in

Figure 2.1.

There are different addition formulas for fields of char(F) ≠ 2,3, char(F) = 3

and char(F) = 2. This section explains how to derive explicit formulas for point

additions and point doublings where the char(F) ≠ 2,3 in affine and projective

coordinate systems. For simplicity, we look at elliptic curves defined over the real

number field R.

 21

2.3.1 Addition Formulas in Affine Coordinates

Let P = (x1, y1) and Q = (x2, y2) ∈ E defined by an Weierstrass non-homogeneous

equation (2.8) with P ≠ -Q. The equation of the line L which intersects P and Q is

given as

 L : y = λx + β, (2.15)

Then P + Q = (x3, y3) can be computed as follows:

Case1 P≠ Q

In this case λ is slope of intersected L

2 1

2 1

(y - y)
 =

(x - x)
λ , β = y1-λx1

The third point where L intersects the curve is R = (xR, yR). Since P + Q = (x3, y3)

= (xR, -yR) = -R (the inverse of R, where a1, a3 = 0), holds and inserting this into

(2.15) yields a formula for the y-coordinate of P + Q.

yR = λxR + β

 y3 = - λx3 + β

= -λx3 - y1 + λx1

= λ(x1 - x3) - y1

The x-coordinate of P + Q is obtained by inserting (2.15) into the equation of the

ellptic curve defined by an Weierstrass equation in the form of (2.8). This yields

(λx + β)2 = x3 + ax + b

 0 = x3 - λ2x2 + (a - 2λβ)x - λ2 + b

 22

This equation can be solved by using the fact that the sum of the roots of a monic

polynomial is equal to minus the coefficient of the variable of the second highest

power. The three roots are x1, x2, x3 and the coefficient is -λ2. Therefore x1 + x2

+ x3 = λ2 holds and since two of those roots are given by the x-coordinates of the

points P and Q, x3 can be calculated. Hence, the formula for a point addition in

affine coordinates is:

x3 = λ2 - x1 - x2

 y3 =λ (x1 - x3) - y1 (2.16)

2 1

2 1

(y - y)
 =

(x - x)
λ

Case 2: P = Q

In this case λ is given as the derivative

2
1

1

3x ady
 =

dx 2y
λ

++++
====

in P = (x1, y1), because the line L is now the tangent on the curve in P. The

formula for a point doubling in affine coordinate can be derived by using the same

arguments as above and is given as

x3 =λ2 - 2x1

y3 = λ (x1 - x3) - y1 (2.17)

2
1

1

3x a

2y
λ

++++
====

Note, that x1 = x2 holds in that case.

The drawback of affine coordinates is, that the required field inversion is very

 23

costly compared to multiplications and squarings. To avoid inversions, alternative

coordinate systems such as projective coordinates are used.

2.3.2 Addition Formulas in Projective Coordinates

Recall from section 2.1 that every element [X, Y, Z] ∈ P
2
(F) for which Z ≠ 0 has

a unique representative [x, y, 1], where x = X
Z

 and y = Y
Z

. The transformation

between affine and Projective coordinates is:

 (x, y) ∈ A
2
(F)  [x, y, 1] ∈ P

2
(F)

[X, Y, Z] ∈ P
2
(F)  (X/Z, Y/Z) ∈ A

2
(F)

When we apply the transformation (2.18) on Weierstrass non-homogeneous

equation (2.8) and multiply by a power of Z to clear denominators we get

homogeneous equation:

Y2Z = X3
 + aXZ2

 + bZ3 (2.19)

To get the formula for a point addition in projective coordinates we apply

transformation (2.18) to (2.16) as follows:

Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P≠ ±Q, and P + Q = (X3, Y3, Z3). Then

3x

2
2 1

2 1 1 2
2

1 22 1

2 1

Y Y

Z Z X X
= - -

Z ZX X

Z Z

æ öç ÷-ç ÷ç ÷ç ÷è ø

æ öç ÷-ç ÷ç ÷ç ÷è ø

2
2 1 1 2 2 1 1 2 1 2

2 1 1 2 1 2

Y Z -Y Z X Z - X Z -2X Z
= -

X Z -X Z Z Z

æ ö æ öç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷è ø è ø

Let u = 2 1 1 2Y Z -Y Z , v = 2 1 1 2X Z -X Z ; this yields

(2.18)

 24

 3x =
2

1 2

1 2

-2X Z
-

Z Z

u v

v

æ öæ ö ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷è ø è ø

Let A= u2 1 2Z Z - v3 -2v2 1 2X Z ; this yields

3x =
1 2

A

Z Z2v
= 3

3

X

Z

3y

2 1

2 1 31 1

1 3 12 1

2 1

Y Y

Z Z XX Y
= -

Z Z ZX X

Z Z

æ öç ÷-ç ÷ç ÷ æ öç ÷è ø ç ÷-ç ÷ç ÷æ öç ÷è øç ÷-ç ÷ç ÷ç ÷è ø

3y
2 1 1 2 1 1

2 1 1 2 1 11 2

Y Z -Y Z X A Y
= -

X Z -X Z Z ZZ Z2v

æ öæ öç ÷ç ÷ç ÷-ç ÷ç ÷ç ÷ç ÷ç ÷è øè ø

1 2 1 2

1 2 1 2

X Z -A Y Z
= -

Z Z Z Z

2 3

2 3

u v v

v v v

æ öæ öç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

1 2 1 2

1 2

X Z -A)- Y Z
=

Z Z

2 3

3

u(v v

v
= 3

3

Y

Z

In total, this yields

3X = Av (2.20)

3Y = 1 2 1 2(X Z -A)- Y Z2 3u v v (2.21)

3Z = 1 2Z Z3v (2.22)

Now to obtain the formula for a point doubling in projective coordinates we apply

transformation (2.18) to (2.17) as follows:

Let P = (X1, Y1, Z1) and 2P = (X3, Y3, Z3). Then

 25

3x

22
1

1 1

11

1

X
3 a

Z X
= - 2

ZY
2

Z

æ öæ öç ÷ç ÷ç ÷+ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷ç ÷ç ÷æ öç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

()
22 2 2

1 1 1 1

2 2
1 1

3X aZ 8Y Z
=

4Y Z

+ -

Let w = 2 2
1 13X aZ+ , s = 1 1Y Z , B = 1 1X Z s , h = w2 – 8B; this yields

 3x 2 2
1 1

h
=

4Y Z
 = 3

3

X

Z

3y

2
1

1 31 1

1 3 11

1

X
3 a

Z XX Y
= -

Z Z ZY
2

Z

æ öæ öç ÷ç ÷ç ÷+ç ÷ç ÷ç ÷ç ÷æ öç ÷è øç ÷ç ÷ç ÷ -ç ÷ç ÷ç ÷æ ö ç ÷ç ÷è øç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

2
1

1 31 1

1 3 11

1

X
3 a

Z XX Y
= -

Z Z ZY
2

Z

æ öæ öç ÷ç ÷ç ÷+ç ÷ç ÷ç ÷ç ÷æ öç ÷è øç ÷ç ÷ç ÷ -ç ÷ç ÷ç ÷æ ö ç ÷ç ÷è øç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

2 2
1 1 1 1

2 2
1 1 11 1

3X aZ X h Y
= -

2YZ Z Z4Y Z

æ öæ ö+ç ÷ç ÷ç ÷ç ÷-ç ÷ç ÷ç ÷ç ÷è øè ø

2 3
1 1 1 1 1

2 2
1 11 1

4X Y Z h 4Y Z
= -

2YZ Z4Y Z

w æ öæ ö -ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øè ø

 26

() 3
1 1 1 1

3 3
1 1

4X Y s h 4Y Z
=

8Y Z

w - -

() 2 2
1

3

B h 4Y s
=

8s

w - -
= 3

3

Y

Z

In total, this yields

3X = 2hs (2.23)

3Y = () 2 2B h 4Y s1w - - (2.24)

3Z = 38s (2.25)

2.4 Elliptic Curves over Finite Fields

Calculations over the real numbers are slow and inaccurate due to round-off error.

Cryptographic applications require fast precise arithmetic. So we are only

interested in finite fields Fq. The formulas stated previously do not change. But

instead of using floating-point arithmetic use a large number and do all

calculations modulo a large prime.

The key of the implementation of cryptosystem (ECC) is the selection of elliptic

curve groups over the finite field of Fp and F2m, where p is a prime and m is

positive integer. By definition, elliptic curve groups are additive groups. Any

such field is isomorphic to F[x]/ ()f x , where f(x) =
m 1

i i p
i 0

, Fm
ix a x a

-

=
+ Îå , is a

manic irreducible polynomial of degree m over Fp.

 27

Three kinds of finite fields Fq are especially suitable for elliptic curve

cryptosystem (ECC), binary fields F2m, prime fields Fp, and optimal extension

fields (OEF) Fpm [30].

2.4.1 Prime Finite fields Fp

For the finite fields Fq of q elements , where q = pm for some prime p and positive

integer m =1, there is a finite field Fp, which is called a prime finite field and

consists of the set of integers modulo p, which are the all possible results of

reduction modulo p:

 {0, 1, 2, …., p-1}

The arithmetic operation on Fp is the usual addition, subtraction and multiplication

modulo p.

For elliptic curve E over a finite field Fp, Weierstrass non-homogeneous

equation (2.8) can be used in which the variable and coefficients all take on values

in the integers modulo p. For some prime number p ≠ 2,3, Weierstrass non-

homogeneous equation (2.8) can be rewritten as:

y2 mod p =(x3
 + ax + b) mod p (2.26)

 where (4a3 + 27b2)mod p ≠ 0 , for a, b ∈ Fp.

Example 2.8 Let p = 23. Consider elliptic curve E: y2 = x3 - 7x + 2 defined over

F23. Note that 4a3 + 27b2 = -1264 (mod 23) ≡ 1 ≠ 0, so E is indeed an elliptic

curve.

Indeed E has 26 points - all of them are explicitly shown in Table 2.1. The

distribution of these points is graphically expressed in Figure 2.3.

 28

Table 2.1 Points of E over field F23

Figure 2.3 : Doubling point P on E

Figure 2.3 Doubling point P on E

We choose P (9, 1) is a point of E, because it satisfies the curve equation: 12 = 93

+ 7(9) + 3 (mod 23). Let’s add points P + P. According to definition P + P = 2P

= - R = (xR, -yR), where λ = (3*92 –7)/2 = 236/2 = 6*12 ≡ 3 (mod 23), xR = 32 –

2*9 = -9 ≡ 14 (mod 23) and -yR = -1 + 3(9 – 14) = -16 ≡ 7 (mod 23). Hence 2P

=-R= (14, 7). Let’s count also point -R = P + P + P = 2P + P, it means we add

points 2P = (14,7) and P = (9,1). Results are λ = (7 – 1)/(14 – 9) = 6*14 ≡ 15

(mod 23), xR = 152 - 14 - 9 ≡ 18 (mod 23), -yR = -7 + 15(14 – 18) ≡ 2 (mod 23),

thus 3P = (18, 2). Equally we can count 4P, 5P, …, 12P = (9, 22), 13P = Ο.

(0,5) (15,11)

(0,18) (15,12)

(3,10) (17,9)

(3,13) (17,14)

(5,0) (18,2)

(9,1) (18,21)

(9,22) (19,9)

(10,9) (19,14)

(10,14) (21,10)

(12,6) (21,13)

(12,17) (22,10)

(14,7) (22,13)

(14,16) Ο

0

5

10

15

20

25

0102030

x

y

 29

Obviously 14P = 13P + P = Ο + P = P, thus we finish the cycle and reach the

starting point again.

2.4.2 Binary Finite Field F2m

The finite field F2m, called a binary finite field, of m2 elements, can be viewed as

vector space of dimension m over F2. That is, there exist a set of m elements

{ }0 1 0 1, , , , m-α α α αK in F2m such that, each a∈ F2m can be written uniquely in

the form:

m 1

i
i 0

ia α
-

=
å

 where ia ∈ {0,1}.

The elements of F2m should be represented by bit strings of length m. There

are several ways of performing arithmetic in F2m. The specific rules depend on

how the string of bits is represented. There are two common structures for basis

representation: polynomial basis representation and normal basis representation [2]

Polynomial base. A polynomial base is of the form { }2 11, , , , ,m-α α αK where α

is a root of an irreducible polynomial f(x) of degree m over F2. The field is then

realized as F2[x]/ ()f x , and the arithmetic is that of polynomials of degree at

most m-1, modulo f(x), ()f x is the cyclic group generated by f(x)[2].

 Normal base. A normal base of F2m over F2 has the form { }2 12 21, , , ,
m-

α α αK

for someα∈ F2m. It is known that such bases exist for all n ≥1. Normal bases are

useful mostly in hardware implementations. First, the field squaring operation is

 30

trivial in normal base representations, as it amounts to just cyclic shifting of the

binary vector representing the input operand.

2.4.3 Optimal Extension Fields(OEFs) (2)n mc±F

Optimal Extension Fields(OEFs) are class of extension fields Fpm, which exploit

the optimization of integer arithmetic in modern processors to produce the fastest

multiplication results over binary and prime fields.

The OEF is defined as Fpm which satisfies the following:

• p is a prime less than but close to word size of the processor.

• p is a pseudo-Mersenne prime given in the form p = 2n c± , where

 1
22log c n£

The elements of Fpm should be represented by a sequence of m words. All

arithmetic operations are performed modulo the field polynomial.

2.5 Counting the number of points

Elliptic curve cryptosystems generally involve the selection of a suitable elliptic

curve E and a point P on E called the base point. To learn more about the

structure of the group E(F) it is useful to know the exact value of #E(F). We will

look at the case when F is Fq, a finite field of q elements. The following results

are the best known methods to date for computing #E.

Theorem 2.9 [Hasse's] Let N be the number of points on an elliptic curve over

Fq, a finite field with q elements. Then

|N - (q + 1)| ≤ 2 q

 31

In another way, Hasse's Theorem gives the estimate #E(Fq) = q+1-t where |t| ≤

2 q [2].

Hasse’s theorem enables one to compute #E(Fqk) from #E(Fq) as follows.

Let t = q + 1 - #E(Fq). Then

 #E(Fq
k) = qk + 1 –αk- βk

where 1 - tT + qT2 = (1 -αT)(1 - βT)[2][16].

Schoof 's Algorithm: In 1985, Schoof presented a deterministic algorithm that

could compute #E(Fq) (its precise value; not a bound or an estimate) in O(log9 q)

bit operations (where q is some power of p)[2]. This deterministic polynomial

time algorithm is the fastest to date, and given few alternatives, it is the best

choice for computing #E. But in practice, it is awkward and costly to implement,

particularly when q is large.

2.6 Discrete Logarithm Problem for Elliptic Curves

In 1980 Neal Koblitz and Victor Mille independently proposed elliptic curve

cryptosystems (ECC), based on the difficulty of mathematical problem so-called

the elliptic curve discrete logarithm problem (ECDLP)[2].

Indeed the elliptic curve discrete logarithm problem ECDLP is the inverse

operation of exponentiation in elliptic curve, which can be stated as follows. Fix

an elliptic curve. kP represents the point P added to itself k times. Suppose Q is a

multiple of P, so that

Q = kP

 32

for some integer k. Then the elliptic curve discrete logarithm problem is to

determine k given P and Q.

 Now we are ready to define the ECDLP as follows:

Definition 2.7 [Elliptic curve discrete Logarithm Problem-ECDLP] given an

elliptic curve E defined over finite field Fq , a point P∈ E(Fq) of order n, and a

point Q∈ E(Fq), find an integer k, 0≤ k ≤ n-1, for which Q = kP[1] [2].

2.6.1 Known Algorithms

The Phlig–Hellman algorithm reduces the determination of k to the determination

of k modulo each of the prime factors of n. Therefore, to achieve the maximum

possible security level, n should be prime. To date, the fastest algorithm for

solving ECDLP is the Pollard ρ−method, as modified by Gallant, Lambert and

Vanstone, and Wiener and Zuccherato, which takes about πn
2

steps, where each

step is an elliptic curve addition. In addition, Van Oorschot and Wiener showed

how the Pollard ρ−method can be parallelized so that if r processors are used, the

expected number of steps by each processor before a single discrete logarithm is

obtained is πn
2

[1][2]. For elliptic curves E defined over a subfield F2k of F2m,

the parallelized Pollard ρ−method for ECDLP in E(F2m) can be sped up to an

expected running time of πnk/m
2r

. Therefore the fastest known algorithm that

solves ECDLP in general is the Pollard ρ−method which it runs in full exponential

time. Since the index calculus methods can compute discrete logarithm problem

 33

(DLP) in the multiplicative group of a finite field (Fq) in sub-exponential time,

they cannot be applied to the case of discrete logarithms over elliptic curves[1][2].

2.6.2 Weak Curves

There are certain types of elliptic curves in which a successful attack could take

place in sub-exponential time. These curves can easily be tested for and avoided.

Such curves are called the supersingular curves and anomalous curves.

Supersingular curves are a special class of elliptic curves on which the elliptic

curve logarithm can be reduced to the case of discrete logarithms in a

multiplicative group (DLP). When combined with sub-exponential algorithms for

solving the classical DLP, this yields a probabilistic subexponential running time

for computing elliptic curve logarithms on supersingular curves. This was a

finding due to Menezes, Okamoto and Vanstone (MOV) in 1991, in which they

showed how the ECDLP could be reduced to classical DLP in an extension of a

multiplicative group Fq[1][2][9].

The other class of curves, the anomalous curves, allows an even more efficient

attack when applicable. Proposed independently in 1998 by Satoh and Araki,

Semaev, and the following year by Smart, this type of curves allow the ECDLP to

be solved in polynomial time by reducing it to the classical DLP in an additive

group Fq [1][2][9].

2.7 Optimizing ECC Implementations

To get efficient elliptic curve cryptosystem, some important issues must be

addressed before implementing that affect the efficiency of the computations.

These include selection of elliptic curve domain parameters (underlying finite

 34

field, field representation, and elliptic curve), selecting suitable coordinate

systems, and choosing efficient algorithms for exponentiation which is the most

elliptic curve operation.

2.7.1 Domain Parameters

When setting up an elliptic curve cryptosystem, there are three basic decisions

that need to be made:

1. Selection of the underlying finite field Fq.

2. Selection of the representation for the elements of Fq.

3. Selection of the elliptic curve E over Fq.

2.7.1.1 Selection of the Underlying Finite Field Fq

The field operations of modular addition and subtraction are relatively fast and

easily implemented. However, modular multiplication (which requires a modular

reduction) and modular inversion are much more time consuming. The following

remarks discuss how the choices of the underlying field, and its representation.

1. Three kinds of finite fields Fq are especially suitable for elliptic curve

cryptosystem (ECC), binary fields F2m, prime fields Fp, and optimal extension

fields (OEF) Fpm.

2. The arithmetic operation on Fp is the usual addition, subtraction and

multiplication modulo p. However using standard modular arithmetic is not very

efficient since multi-precision remaindering operations are very expensive. Hence

when used in elliptic curve systems there are various choices that are often made:

General Primes For general primes the most efficient implementation technique

is almost always to use Montgomery Arithmetic. Montgomery arithmetic uses a

 35

special representation to perform efficient arithmetic, the division and

remaindering essentially being performed by bit shifting.

Generalized Mersenne Primes Certain primes are highly suited for efficient

reduction techniques, the most simple form of such primes being the Mersenne

primes, which are primes of the form p = 2k -1. However the number of Mersenne

primes of the correct size for cryptography is limited[30].

3. Looking at F2m as a vector space of dimension m over F2, the elements of F2m

can be represented as binary vectors (or strings) of length m, given a suitable basis

of this vector space. This makes it easy to store data in hardware (ideally in shift

registers of length r). Addition in F2m can be performed in one clock cycle by

bitwise XOR-ing the operands.

4. In software environments in which an arithmetic processor is already available

for modular exponentiation, the performance of Fp can be improved so that in

some cases it exceeds the performance of F2m. This holds true for platforms such

as those using Pentium processors or, in the case of smart cards, those having a

crypto coprocessor to accelerate modular arithmetic.

5. If the field F2m is selected as the underlying finite field, then there are many

ways in which the elements of F2m can be represented. The two most efficient

ways are an optimal normal basis representation and a polynomial basis

representation.

6. When using a normal basis representation for the elements of F2m, squaring a

field element becomes a simple cyclic shift of the vector representation, and thus

the multiplication count in adding two points is reduced.

 36

2.7.1.2 Selection of an Suitable Elliptic Curve

To obtain secure ECC, elliptic curve E defined over a finite field Fq must satisfy

the following conditions:

1. To resist the Pollard ρ-attack mentioned, #E(Fq) should be divisible by a

sufficiently large prime n (for example, n > 2160).

2. To resist the Semaev–Smart–Satoh–Araki attack, #E(Fq) should not be equal to

q.

3. To resist the MOV reduction attack, n should not divide qk-1 for all 1 ≤ k≤ C,

where C is large enough so that it is computationally infeasible to find discrete

logarithms in F*
qc.

Indeed, there are four techniques for selecting an appropriate elliptic curve[2].

1) Using Hasse’s Theorem. This technique can be used for picking curves over

F2m where m is divisible by a small integer l ≥ 1.

To select an appropriate curve over F2m, we first pick an elliptic curve over a

small field F2
l, where l divides m, compute #E(F2

l) exhaustively, and then use

Hasse’s theorem to determine #E(F2m). If conditions (1), (2) and (3) above (with

q = 2m) are not satisfied, then another curve is selected and the process is repeated.

2) The Global Method. Another possibility is to choose an elliptic curve defined

over a number field and then reduce it modulo a prime ideal such that the

resulting curve over a finite field satisfies conditions (1), (2) and (3).

3) Multiplication Method. The method of complex multiplication (CM) allows

the choice of an elliptic curve order before the curve is explicitly constructed.

 37

Thus, orders can be generated and tested to satisfy conditions (1), (2) and (3); a

curve is constructed only when these conditions are met.

4) Choosing a Curve at Random. Another approach to selecting an appropriate

elliptic curve E over Fq is to select random parameters a, b ∈ Fq such that (4a3 +

27b2) ≠ 0. One then computes u = #E(Fq) and factors u. This process is repeated

until conditions (1), (2) and (3) are satisfied.

2.7.2 Coordinate Systems

One of the crucial decisions when implementing an efficient elliptic curve

cryptosystem is deciding which point coordinate system to use. The point

coordinate system used for addition and doubling of points on the elliptic curve

determines the efficiency of these routines, and hence the efficiency

exponentiation.

Affine coordinates are the simplest to understand and are used for

communication between two parties because they require the lowest bandwidth.

The drawback of affine coordinates is, that the required field inversion is very

costly compared to multiplications and squarings. So, alternative coordinate

systems such as Projective coordinates can be used to avoid inversions.

Table 2.2 shows the computational complexity of point addition and doublings

in two coordinate systems on the elliptic curve over Fp , where M, S and I denote

field multiplication, squaring and inversion respectively, and the cost of field

additions and subtractions are ignored.

 38

Addition Doubling Coordinate

M S I M S I

Affine 2 1 1 2 2 1

Projective 12 2 0 7 3 0

Table 2.2 The computational complexity of affine and projective coordinate systems.

Cohen et al. [7] recommended the idea of mixed coordinates, where the inputs

and outputs to point additions and doublings may be in different coordinates.

2.7.3 Exponentiation

Elliptic curve exponentiation can be computed by repeating additions and

doublings, where the average number of addition of elliptic points operations

depends on the minimal hamming weight of the exponent. The minimal hamming

weight representation of exponent can be obtained by using windowing method,

and mixed with the addition-subtraction method for reducing the number of

additions [10][20].

 39

CHAPTER 3

3 Elliptic Curve Exponentiation

Elliptic curve exponentiation is the operation of computing kP for a given point P

on an elliptic curve and integer k. It is the primary operation in elliptic curve

cryptosystem such as ECDH, which is denoted by

 Q = kP

where Q, P are points on an elliptic curve and k is an integer; the cost of executing

such cryptosystems depends mostly on the complexity of exponentiation. Thus,

the performance and execution time of such elliptic curve cryptosystems is

primarily determined by using efficient algorithms for exponentiation.

One approach to speed up the elliptic curve exponentiation kP, P ∈ E(Fq) is by

reducing of the number of additions. It is possible to reduce the number of

additions by recoding the integer k into a representation having minimal number

of nonzero digits [10].

Next section presents how to represent integer k with minimal number of

nonzero digits.

3.1 Base-2 Representations of Integers

The involved exponent of elliptic curve exponentiation operation is positive

integer. There are several ways to represent an integer rather than well known

decimal representation. One of these representations is so-called base-2

representations where the integer is represented by the sum of multiple powers of

 40

two. In base-2 representations digits other 0 and 1 are permitted. The set of digits

is called digit set and denoted by D [12].

 Definition 3.1 The sequence t-1 0(k , . . . , k) is called a D-representation of the

integer k, if

 k =
t

i
i

i=0

k .2∑ and Dik , i = 0, . . . , t - 1.∈ ∀ (3.1)

where D is called the digit set and the number of elements in the digit set, i.e. its

order is denoted by |D| [12].

If D = {0, 1} holds, then we give the simplest base-2 representation which is

the uniquely determined binary representation. The length of this representation,

the so-called bit length t is calculated as t = 2log k +1          . The ki are called bits,

which is short for binary digits. If D = {0, ±1} holds, the representation is also

called a signed binary representation. More general, If D = {0,±1, . . . ,±x} holds,

the representation is also called a signed representation. For example the sequence

(1, 0, 1, 0, 1, 1, 0) is binary representation of 86 with bit length 6, since

86 = 1* 26 + 0* 25 + 1* 24 + 0* 23 + 1* 22 + 1* 21 + 0* 20

In general, D-representations loose the property of uniqueness. For example

(1, 0, 1, 1, 1, 1) and (1, 1, 0,1 , 0, 1) are both signed binary representations of 45

with bit length 6, where 1 = -1.

It is necessary to measure the quality of representations. This can be done by

using the weight of either one D-representation separately or several D-

representations at once.

 41

Definition 3.2 Let k = t-1 0(k , . . . , k) be a D-representation with bit length t. The

Hamming weight of k is the number of non-zero digits in k and denoted by Hw(k).

The Hamming density of k is given as Hd(k) = Hw(k)/n. The average Hamming

density of a class of D-representations χ is the expected Hamming density of a

randomly chosen D-representation in χ with bit length n→ ∞ and denoted by

AHd(χ).

3.1.1 Signed Binary Representation

Signed binary representation is redundant binary representation. It does not

exhibit a unique minimal form. Algorithms to generate a minimal representation

are widely reported for exponentiation, and multiplication [12].

In 1951 Booth presented an algorithm to multiply two numbers by converts a

2’s complement binary number to a signed binary digit set D = {0, ±1}. Booth

algorithm scans the bits from right to left, and replaces a consecutive block of

several 1's by a block of 0's and 1 according to
{ {
a a 1

1...1 1,0...0 ,1

−−−−

            
→→→→                        

            

[30].

Example 3.3 Let k = 221 with binary representation (1, 1, 0, 1, 1, 1, 0, 1) then

Booth algorithm convert this binary representation to (1 , 0, 1, 1, 0, 0, 1, 1, 1) .

However, Booth recoding has a challenging, if two blocks of 1's are separated

by an isolated 0, the Booth algorithm does not use the fact that (((()))) (((())))1,1 0,1≡≡≡≡ . For

example, { {1...1,0,1...1

a b

    
    
    
    

 is replaced by
{ {1,0...0 ,1 ,1,0...0 ,1

a 1 b 1

    
    
    

− −− −− −− −    

and not by { {1,0...0 ,1 ,0...0 ,1

a b 1

    
    
    

−−−−    
.

Therefore Booth recoding output is not sparse, and the Hw of exponent k of large

t bits, is (t +1)/2 on average which is not minimal [5].

 42

Later, in 1960, through his investigations on how to reduce the number of

additions and subtractions used in binary multiplication and division, Reitwiesner

presented a method to convert an exponent k from binary to its canonical form of

signed binary representation so-called NAF[10][13].

Definition 3.4 A signed binary representation is said to be non-adjacent form

(NAF), if no two adjacent digits are nonzero.

Reitwiesner scans the bits from right to left, and replaces a consecutive block of

several 1's by a block of 0's and 1 according to
{ {
a a 1

1...1 1,0...0 ,1

−−−−

            
→→→→                        

            

, If two

blocks of 1's are separated by an isolated 0, the Reitwiesner algorithm uses the

fact that (((()))) (((())))1,1 0,1≡≡≡≡ . For example, { {1...1,0,1...1

a b

    
    
    
    

 is replaced by { {1,0...0 ,1 ,0...0 ,1

a b 1

    
    
    

−−−−    

and not by
{ {1,0...0 ,1 ,1,0...0 ,1

a 1 b 1

    
    
    

− −− −− −− −    

. So Reitwiesner's algorithm is also known as Booth

canonical recoding algorithm [8].

Example 3.5 Let k = 221 with binary representation (1, 1, 0, 1, 1, 1, 0, 1) The

NAF of k is generated as follows

 1 1 0 1 1 1 0 1

 1 0 1
 1 1 0
 1 0 1
1 0

1 0 0 1 0 0 1 0 1

Hence, the NAF of 221 is given as (1 , 0 , 0, 1, 0, 0, 1, 0, 1) .

 43

Algorithm 3.1 (Reitwiesner algorithm), shows how to generate non-adjacent

form (NAF) of exponent k from binary form of k.

Algorithm 3.1 Generation of NAF [13]

 INPUT: An t-bit exponent k in its binary representation t 1 t 0(k ,k ,...,k)−−−−

 OUTPUT: The NAF of t 1 t 0(, ,...,) of kµ µ µ−−−−

1. c 0;k 0;k 00 t 1 t← ← ←← ← ←← ← ←← ← ←++++

2. for i from 0 to t do

 2.1 c (c k k) / 2i 1 i i i 1← + +← + +← + +← + +    + ++ ++ ++ +    

 2.2 i i i i 1c k 2cµ ++++← + −← + −← + −← + −

3. return The NAF t 1 t 0(, ,...,) of kµ µ µ−−−−

Reitwiesner's proved the NAF propriety of his output, and this representation

is unique and has minimal Hw [13]. Morain and Olives [20] showed that on

average the minimal Hw of exponent t-digits k in binary signed representation is

equal to
(t + 1)

3
.

3.2 Algorithms for Elliptic Curve Exponentiation

 Since elliptic curve exponentiation kP, where k is a positive integer and P a given

point on elliptic curve is defined as

k times

kP = P + . . . + P 1 4 2 4 3

 For large integer k, computing exponentiation kP for a given point P on an elliptic

curve is costly endeavor, and it is inefficient to use straightforward summation

technique that requires (k-1) elliptic additions, so other techniques should be used

to efficiently compute exponentiation.

 44

3.2.1 Binary Methods

Binary methods are the standard algorithms for the efficient computation of an

exponentiation. These algorithms use the binary representation of the exponent.

There are two different binary methods, one that scans the bits of the exponent

from right-to-left and other from left-to-right. A doubling is performed at each

step, but performing addition depends on the scanned bit value, so it called double

and add algorithms.

3.2.1.1 Right-to-Left Binary Method

Let P a point in elliptic curve, and t-bit exponent k in its binary representation. It

possible to compute

 kP = t -1 t -2
t-1 t-2 1 0(k 2 + k 2 + ...+ k 2 + k) P

 = t -1 t -2
t-1 t-2 1 0k 2 P + k 2 P + ...+ k 2 P+ k P

Algorithm 3.2 is adapted from [13] to present right-to-left binary method.

Algorithm 3.2 Right-To-Left Binary Method [13]

INPUT : an element P ∈ E(Fq), t-bit exponent k in its binary representation.

OUTPUT : kP

1. X ←Ο (where Ο is infinity)

2. Q P←

3. For i from 0 to t-1 do the following

 3.1 if ki = 1 then X← ECADD(X, Q)

 3.2 Q←ECDBL(Q)

4. return (X)

Algorithm 3.2 computes the exponentiation kP starting at the least significant

bit k0, and performs an ECADD operation each time the current bit ki is 1, hence

 (3.2)

 45

with probability 1/2. An ECDBL operation is performed in each iteration.

Therefore the right-to-left binary method on average requires

1
2 t ECDBL + t · ECADD operations.

Example 3.6 Let the exponent k = 18 with binary representation (1, 0, 0, 1, 0).

The following table displays the values of X, Q, ki during each iteration of

algorithm 6 for computing 18P.

i 0 1 2 3 4 Finally

ki 0 1 0 0 1 -

Q P 2P 4P 8P 16P 32P

X Ο 2P 2P 2P 18P 18P

Table 3.1 The values of X, Q during the iterations of right-to-left binary method

Right-to-left binary method can be generalized to work with D-

representations. Algorithm 3.3 is adapted from [18] shows the general right-to-

left binary method.

Algorithm 3.3 General Right-To-left Binary Method [18]

INPUT : an element P ∈ E(Fq), and t-digits exponent k in D-representation

OUTPUT : kP

1. X ←Ο

2. Qd ← dP , *d D∀ ∈
3. For i from 0 to t-1 do the following

 3.1 if ki ≠ 0 then X← ECADD(X,
ik

Q)

 3.2 Qd← ECDBL(Qd) , d (D {0 })∀ ∈ −

4. return (X)

We noticed Algorithm 3.3 precompute all points in the form dP, d ∈ D-{0,1}

then performs an ECADD operation each time the current digit ei is non-zero,

 46

hence with probability AHd(χ). Since the point d·2iP, d ∈ D has to be added in

the i-th iteration, all the |D|-1 points have to be doubled in each iteration. On

average, the general right-to-left binary method requires

t(|D|-1) ECDBL + t · AHd()ECADDc

operations to compute a exponentiation kP. Also in this case, additional ECADD

and ECDBL operations are required for the precomputation.

3.2.1.2 Left-to-Right Binary Method

The basic idea of the left-to-right binary method is to successively factor out 2 in

(3.2), which yields

t -1 t -2
t-1 t-2 1 0

t -2 t -3
t-1 t-2 1 0

t-1 t-2

kP=k 2 P + k 2 P + ...+ k 2 P+ k P

 =2(k 2 P + k 2 P + ...+ k P)+ k P

 =2(2(2(k 2 P + k P)+ ...)+

M
K 1 0

t-1 t-2 1 0

k P)+ k P
 =2(2(2(2(k P)+ k P)+ ...)+ k P)+ k PK

 (3.3)

Now it is possible to start the evaluation at the most significant bit kt-1, i.e.

left-to-right. In the i-th iteration, the intermediate result Q is doubled and if the

current bit ki is 1, P is added as shown in Algorithm 3.4.

Algorithm 3.4 Left-To-Right Binary Method [13][18]

INPUT : an element P ∈ E(Fq), t-bit exponent k in its binary representation.

OUTPUT : kP

1. Q← Ο

2. For i from t-1 down 0 do the following

2.1 Q ←ECDBL(Q)
 2.2 if ki = 1 then Q←ECADD(Q,P)

3. return (Q)

 47

Algorithm 3.4 performs an ECADD operation each time the current bit ki is 1,

hence with probability 1/2. An ECDBL operation is performed in each iteration.

Therefore, to compute exponentiation, the left-to-right binary method on average

requires

1
2 t ECDBL + t · ECADD operations.

Example 3.7 Let the exponent k = 18 with binary representation (1, 0, 0, 1, 0).

Table 3.2 displays the values of Q, ki during each iteration of algorithm 3.4 for

computing 18P.

i 4 3 2 1 0

ki 1 0 0 1 0

ECDBL Ο 2P 4P 8P 18P

ECADD P - - 9P -

Q P 2P 4P 9P 18P

Table 3.2 The value of Q during the iterations of left-right binary method

Left-to-right binary can also be generalized to work with D-representations as

Algorithm 3.5 which is adapted from[18][23].

Algorithm 3.5 General Left-To-Right Binary Method [18][23]

INPUT : an element P ∈ E(Fq), and t-digits exponent k in D-representation

OUTPUT : kP

1. Q← Ο (where Ο is infinity)

2. Qd←dP , *d D∀ ∈

3. For i from t-1 to 0 do the following

 3.1 Q←ECDBL(Q),

 3.2 if ki ≠ 0 then Q ←ECADD(Q,
ik

Q)

 48

 4. return (Q)

We noticed that algorithm 3.5 precompute all points in the form dP, d ∈ D-{0,

1}, then performs an ECADD operation each time the current digit ki is non-zero,

hence with probability AHd(χ). Also, one ECDBL operation is performed in each

iteration to double the intermediate result. On average, the general left-to-right

binary method requires

 t ECDBL + t · ECADDAHd(X)

operations to compute a exponentiation kP. Also in this case, additional ECADD

and ECDBL operations are required for the precomputation.

3.2.1.3 Why Left-to-Right

From Algorithms (3.2, 3.4), we noticed that both methods require the same

amount of ECADD and ECDBL operations, but right-to-left binary method

requires one additional register X to store i2 P .

In the case of the general methods:

 1) The left-to-right binary method requires only one ECDBL operation in each

iteration, while the right-to-left binary method requires one ECDBL operation for

each precomputed point in each iteration. This means, that the right-to-left binary

method requires (|D|-1) times more ECDBL operations than its left-to-right

counterpart.

2) The precomputed points for the ECADD step in left-to-right remain fixed

during the whole runtime. So it is possible to use mixed coordinates as in [7] for

the ECADD step. We can conclude that left-to-right algorithms are preferable.

 49

3.2.1.4 Exponentiation with Precomputation

If there is extra memory, then it is possible to use general binary algorithms. As it

turned out, the precomputation of several points is required by both algorithms,

depending on the D-representation used for the exponent, so additional ECADD

and ECDBL operations are required for the precomputation stage.

In general binary methods, and D-representation used for the exponent, the

number of points to precompute equal (|D| - 1), because the points dP is computed

for all d *D∈ .

As explained in Section 2.2 inversions of points on an elliptic curve can be

computed virtually for free just by changing the sign of the y-coordinate. When

the signed representations of the exponent used, the number of points to

precompute can be reduced by more than 50%, because the points d P is

computed only for d ∈ digit-set D and stored in the precomputation stage.

Next sections present three general left-to-right methods with signed

representation of exponent.

3.2.2 Sliding Window applied on NAF

Sliding window method is an approach for computing exponentiation with

prcomputations. It generalizes binary method and is parameterized by a positive

integer w, where the case w = 1 is the same as binary method. Sliding window

method can recode the binary representation of the exponent by such windows

yields a D-representation of exponent. In sliding window method there is no

reasons to force the windows to be the next to each other, fewer windows of width

 50

up to w can suffice to cover all non-zero exponent bits if strings of zeros are

skipped, Moreover, one can arrange for all windows to be odd-valued (i.e., have a

1 as the rightmost bit). Then the bits covered by each single window correspond

to a value in the digit-set D = {1, 3,..., 2w - 1}.

It is possible to scan the binary representation of the exponent from left to

right, or from right to left, starting a new window whenever a non-zero bit is

encountered, choosing the maximum width up to w for this particular window

such that the rightmost bit is also non-zero.

Example 3.8 Let k = 221 with binary representation (1, 1, 0, 1, 1, 1, 0, 1). Then

left-to-right scanning with window width w =3, can convert d as follows

 1 1 0 1 1 1 0 1

 3 0 0 0 7 0 1

Hence, yields a representation of k = 221 is given as 0 3 0 0 0 7 0 1 .

 Such left-to-right scanning or right-to-left scanning yields a representation

it

ii 0k k 2== ∑ , ik D∈

 and the average density of nonzero digits of both representations is equal to

1

w 1++++
 [18].

Koyama and Tsuruoka [14] suggested the application of a sliding window

scheme on binary signed-digit representation as NAF to obtain a signed recoding

with smaller Hamming weight. De Win et al.[33] applied the sliding window

method directly on NAF giving smaller digit set D ={0,±1,±3, . . . ,±dmax}, where

dmax is the largest odd NAF consisting of at most w digit equals w 11
3
(2 1)++++ −−−− for

 51

odd w, and w 11
3
(2 1) 2++++ + −+ −+ −+ − for even w. Algorithm 3.6 describes the sliding

window applied on NAF as stated in [33].

 Algorithm 3.6 Sliding Window applied on NAF [33]

INPUT: an element P ∈ E(Fq), NAF (, ,...,)t 1 t 0µ µ µ−−−− of k , window width w ≥ 1.

OUTPUT: kP

precomputation stage:

1. P1 P, P2  ECDBL(P)

2. For j from 1 to
w w 1(2 (1))

1
3

+++++ −+ −+ −+ −
−−−− do

 P2i+1  ECADD(P2i-1 , P2)

Evaluation stage

3. Q Ο

4. i t-1

5. while i ≥ 0

5.1 If iµ = 0 then

 5.1.1 Q  ECDBL(Q)

5.1.2 i  I -1

5.2 else

 5.2.1 s  max(i - w + 1, 0)

 Let l be the smallest integer such that l ≥ s and lµ ≠ 0

 5.2.2 for n from 1 to i-l+1 do Q  ECDBL(Q)

 5.2.3 if (, ,...,)i i 1 lµ µ µ−−−− > 0 then Q ECADD(Q , P (, ,...,)i i 1 lµ µ µ−−−−)

 5.2.4 else if (, ,...,)i i 1 lµ µ µ−−−− < 0 then Q  ECADD(Q ,- P (, ,...,)i i 1 lµ µ µ−−−−)

 5.2.5 for n from 1 to l-s do

 Q  ECDBL(Q)

 5.2.6 i  s -1

 52

6. Return Q

3.2.3 The width-w Non Adjacent Form (wNAF)

Blake, Seroussi and Smart and Solinas, proposed independently wNAF that is

computed directly from binary strings using a generalization of NAF recoding for

w>2. [18]

Definition 3.9 (wNAF) A sequences of signed digits is called wNAF iff the

following three properties hold:

 (1) The most significant non-zero bit is positive.

 (2) Among any w consecutive digits, at most one is non-zero.

 (3) Each non-zero digit is odd and less than 2
w-1
 in absolute value.

If w=2, 2NAF can simply call NAF [18].

3.2.3.1 Generation of wNAF

Algorithm 3.7 describes the generation of the wNAF from the decimal

representation as stated [18].

INPUT: width w, an t-bit integer k in its decimal representation.

OUTPUT: The wNAF (, ,...)t t 1 0δ δ δ−−−− of k

1. i← 0

2. while k ≥ 1 do

 if k is even then

 0iδ ====

 else

 wmods 2iδ ←←←← ; ik k k← −← −← −← −

 k= k /2 ; i← i+1

Algorithm 3.7 Generation of wNAF [18]

 53

3. return (, ,...)t t 1 0δ δ δ−−−−

Algorithm 3.7 generates a wNAF of exponent k from least significant bit that

is right-to-left generation, such that at most one of any w consecutive digits is

non-zero. This algorithm uses the signed modulo operation such that k is odd

each time a signed modulo operation is performed. For example, the

representation:

k = (1,1,1,1,0,0,1,0,1,1,0,0,1,0,1) (3.4)

with window size w = 3, is converted to 3 NAF representation:

k = (1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 3) (3.5)

wNAF have an average density of nonzero digits of 1/(w + 1) for t → ∞, and the

signed-digit set D = {0,±1,±3, . . . ,±(2w-1 - 1)} where t is the bit-length of the

binary form of exponent k [18]. In [22], Muir and Stinson proved that the Hw of a

exponent given in its wNAF is minimal for any choice of w. This implies that the

AHd of the wNAF is minimal amongst all D-representations. Therefore wNAF

are optimal in the terms of time and memory for w > 3. Muir and Stinson [22] also

proved the following these properties of the wNAF

 (1) wNAF representation is unique except for the number of leading zeros

 (2) Every integer can represented as wNAF.

 (3) An integer’s w-NAF is at most one digit longer than its binary representation.

3.2.3.2 Exponentiation with wNAF

Algorithm 3.8 is adapted from [26] describes the exponentiation with wNAF

Algorithm 3.8 Exponentiation with wNAF [26]

 54

INPUT: an element P ∈ E(Fq), wNAF (, ,...)t t 1 0δ δ δ−−−− of k , window size w ≥ 2.

OUTPUT: kP

precomputation stage

1. P1 P

2. P2  ECDBL(P)

3. For i from 1 to 2w -2 -1 do

 P2i+1  ECADD(P2i-1 , P2)

 Evaluation stage

4. Q Ο

5. For i from t down to 0 do

 5.1 Q  ECDBL(Q)

5.2 if iδ > 0 then Q ECADD(Q , P iδ)

5.3 else if iδ < 0 then Q  ECADD(Q ,- P iδ)

 6. Return Q

Although there are slightly more point operations needed to evaluate the

exponentiation if the exponent is represented in wNAF compared to the [33]

representation, the required precomputation is less in the wNAF case because of

the smaller digit set. Blake et al. proved that wNAF is asymptotically better than

sliding window on NAF schemes if w > 3 [27].

3.2.4 The width-w Mutual opposite Form (wMOF)

As we pointed out in subsection 3.2.1 that left-to-right exponentiation algorithms

is preferable, But all algorithms for generating wNAF, need carry-overs due to the

recoding is restricted to be done right-to-left due to additional memory O(n) to

store the recoded string before starting the left-to-right evaluation of the

exponentiation. Hence it is an important task to recoding the exponent from left

to right, this enables the recoding, and evaluation stage in general left-right binary

 55

method to be merged without storing the recoded exponent, this reduce memory

space [27].

Joye and Yen [13] proposed a left-to-right binary recoding algorithm, but it

has been an unsolved problem to generate a left-to-right recoding for w> 2.

wMOF is the first left-to-right signed recoding scheme for w > 2 that is

constructed by applying left-to-right sliding window method on Mutual opposite

form (MOF), and it is efficient as wNAF [27].

3.2.4.1 The Mutual opposite Form (MOF)

Okeya et al [27] defined a new canonical binary signed-digit representation called

the mutual opposite form (MOF). MOF is equal Booth recoding but can compute

in any order.

 Definition 3.10 The n-bit mutual opposite form (MOF) is an n-bit signed binary

string that satisfies the following properties:

1. The signs of adjacent non-zero bits (without considering zero bits) are

opposite.

2. The most non-zero bit and the least non-zero bit are 1 and, 1 respectively,

unless all bits are zero.

For example the representation 01 0011 010001 0100 , is of MOF. It has zero bits

inserted between non-zero bits that have a mutual opposite sign.

by (t +1)-bit MOF, and the average non-zero density of t-bit MOF is 1/2 for

t→ ∞. They proved also that the operation µ = 2k  k converts binary string k to

 56

its MOF, where ‘’stands for a bitwise subtraction. Algorithm 3.9 shows how

MOF is computed.

3.2.4.2 Generation of The width-w Mutual opposite Form (wMOF)

In order to apply left-to-right sliding window method on MOF, Okeya and Takagi

[27] defined the conversions for MOF windows of length l = 2, 3, . . ., w, such that

the first and the last bit is non-zero. If l < w holds, the window is filled with

closing zeros instead of leading ones. These conversions lead to generate

complete conversion table, for example, the look-up table width 4 is as following:

01000011 10001000} →→ 0030
0110

1011
→



 0005

1111

0111
→





 0007

1110

1100
→





00101001 0001000}1 →→
0300

0101

0111
→



 5000

1111

1101
→





 7000

1011

0011
→







In general when the look-up table width w is used, then the signed-digit set D

= {0,±1,±3, . . . ,±(2w-1 - 1)} which is minimal as wNAF. Therefore, the scheme

Algorithm 3.9 Generation MOF from Binary [27]

 INPUT: An t-bit exponente in its binary representation (k ,k ,...,k)t 1 t 0−−−−

 OUTPUT: MOF of (, ,...,) of kt 1 t 0µ µ µ−−−−

1.
i i 1kµ

−−−−←−←−←−←−

2. for i from t-1 down to 1 do

 i 1 ii k kµ
−−−−← −← −← −← −

3. 0i kµ ←−←−←−←−

4.
return The MOF (, ,...,) t 1 t 0µ µ µ−−−− of k

 57

requires only 2w-2 precomputed elements. Now we give the definition of wMOF

as in [27].

Definition 3.11 A sequence of signed digits is called wMOF iff the following

three properties hold:

1. The most significant non-zero bit is positive.

2. All but the least significant non-zero digit x are adjoint by w-1 zeros as

follows:

– in case of 2s-1 < |x| < 2s for an integer 2 ≤ s ≤ w - 1 the pattern

– equals { {
s w s 1

0 0 x 0 0

− −
L L

– in case of |x| = 1, either the pattern equals 321
w-1

0 . . . 0 x and the next lower

non-zero digit has opposite sign from x or the pattern equals 321
2-w

0 . . . 0 0x

and the next lower non-zero digit has the same sign as x.

If x is the least significant non-zero digit, it is possible that the number of right-

hand adjacent zeros is smaller than stated above. In addition, it is not possible

that the last non-zero digit is a 1 following any non-zero digit.

3. Each non-zero digit is odd and less than 2
w-1
in absolute value.

The following algorithm is proposed by [27] to generate wMOF.

Algorithm 3.10 Generation wMOF from MOF [27]

 INPUT: width w, t-bit exponent k in its MOF (k ,k ,...,k) t 1 t 0−−−−

 OUTPUT : wMOF of k = (, ,...)t t 1 0δ δ δ−−−−

1. k-1 ← 0 ; i← t

2. While i ≥ w - 1 do

 58

 if ki = ki-1 then

 2.1.1 ki ← 0 ; i← i-1

 else {The MOF window begins with a non-zero digit left hand}

 2.2.1 (, ,...)i i 1 i w 1δ δ δ− − +− − +− − +− − + ←Table wSW (ki-1 - ki, ki-2 - ki-1, . . . , ki-w – ki-w+1)

 2.2.2 i← i-w

3. if i ≥ 0 then

 3.1 (, ,...)i i 1 0δ δ δ−−−− ← Table i+1SW(ki-1 - ki, ki-2 - ki-1, . . . , k0 - k1,-k0)

4. return (, ,...)t t 1 0δ δ δ−−−− .

Algorithm 3.10 generates a wMOF of exponent from most significant bit by

applying sliding window left-to-right and using the conversion table, for example,

exponent k = 619 has binary the representation

k = (1,0,0,1,1,0,1,1,1,1) (3.6)

with window size w = 3, is converted to 3 MOF representation:

k = (0, 1, 0, 0, 0, 3, 0, 0, 3, 0, 1) (3.7)

Okeya and Takagi [27] proved that every non-negative integer k has a

representation as wMOF, which is unique except for the number of leading zeros

Theorem 3.12 For t→∞, the average non-zero density of wMOF is asymptotically

1/(w+1) [27].

Proof The AHd is the average density of non-zero digits of a randomly chosen

wMOF with bit length t →∞. This density is given as the average number of non-

zero digits divided by the average number of digits written out by algorithm 3.10

Two cases exist:

ki = 0 : In this case only one digit is written out, which is zero.

ki ≠ 0: In this case w digits are written out, one non-zero and w - 1 zero.

 59

Since AHd(MOF) = 1/2, both cases appear each with a probability of 1/2.

Therefore, the AHd of the wMOF is given as

 AHd(wMOF) =
1 1
2 2
1 1
2 2

.0 .1 1

1.1 .

++++
====

++++++++ ww
 

Avanzi [3] proved that the Hw of a exponent given in its wMOF is minimal

for any choice of w. This implies, that the AHd of the wMOF is minimal amongst

all D-representations which use the digit set D = {0,±1,±3, . . . ,±2w-1 - 1}.

Finally, we compare the characterizing properties for wMOF and previous two

schemes sliding window applied on NAF, and wNAF. These properties are size

of precomputed table (i.e. #{ d : d ∈ D*}, and the nonzero density. Table 3.3

shows the comparison of these characterizing properties, where SW is an

abbreviation for sliding window.

Scheme Table Size 1/ nonzero density

SW+ NAF [33] w 22 −−−−
w

w 2

(1)4
3 3.2

w −−−−

−−−−
+ −+ −+ −+ −

wNAF [17][18] w w 11 (2 (1))
3

+++++ −+ −+ −+ − w +1

wMOF [27] w 22 −−−− w +1

Table 3.3 General comparison of table size and non-zero density

3.2.4.3 Exponentiation with wMOF, w >2

All algorithms for generating wNAF need carry-overs, as result the recoding is

restricted to be done right-to-left. In the context of memory constraint devices, a

small digit set D is even more valuable, because fewer precomputed elements

have to be stored. Although none of the preceding methods is a left-to-right

scheme, each one requires additional memory O(n) to store the recoded string

before starting the left-to-right evaluation of the exponent product. The

 60

advantages of exponentiation with wMOF, the digit set of wMOF is the same as

for wNAF, and turns out as a complete left-to-right scheme. The evaluation stage

can be performed left-to-right, and the recoding into wMOF proceed left-to-right,

this due to no additional memory required for performing the exponentiation,

since algorithm 13 requires only O(w) bits memory for generating wMOF[27].

Okeya and Takagi [27] constructed an algorithm to compute table look-up for

any w in an efficient way, and less memory usage. This table enables to merge

the evaluation stage that can be performed left-to-right, and the recoding into

wMOF.

1. Computation Table look-up

The table computation algorithm 3.11 has to compute γ and ξ which fit the

equation c = γ*2ξ, and the converted one wMOF δ

 is obtained from γ and ξ as:

 δ 321321
ξξ

γ 0 ..., 0, ,),0 ..., 0,(

1-w −

= (3.8)

Algorithm 3.11 Table Computation with Width w [27]

INPUT: width w.

OUTPUT: arrays γ0...tw and ξ0...tw where tw = 2w - 1.

 1. For k ← 2w-1 to 3 *2w-1 - 1 do the following

 1.1 c ← (k & (2w - 1)) - (k >> 1)

 1.2 ξk-2
w-1 ← 0

 1.3. While (c & 1) = 0 do the following

 1.3.1 ξk-2
w-1 ← ξk-2

w-1 + 1

 1.3.2 c← c >> 1

 1.4. γk-2
w-1 ← c

 2. return γ0...tw and ξ0...tw

 61

We can observe from algorithm that ξ is in {0, 1, ...,w - 1} which are w

different values,  wlog 2 bits are required to store ξ and each element of γ is in

{±1, ±3, ..., ±(2w-1 - 1)} which has the cardinality of 2w-2 and requires w - 2 pre-

commuted points.

2. Computation of Precomputed points

Further, the precomputations (2w-2- 1) of elliptic pints are required, since wMOF is

signed binary representations. Those points are all points of the form γP, where γ

∈ signed digit set D = {0,±1, ±3, ..., ±(2w-1 - 1)}, and P is an elliptic point .

3. On the Fly Multiplication for w > 2

Finally the table look-up created in algorithm 3.12 computed and precomputed

points are used to merge the recoding and evaluation stages for any w.

Algorithm 3.12 Exponentiation with wMOF [27]
INPUT a non-zero t-bit binary string k, a point P and the multiple of the

point P, γ0...tw and ξ0...tw, the precomputed table look-up .

OUTPUT exponentiation kP.

1. i ← t

2. Q ← Ο

3. While i ≥ 1 do the following

3.1. if (ki XOR ki-1) = 0, then do the following

3.1.1. Q ←ECDBL(Q)

3.1.2. i ← i - 1

3.2. else do the following

3.2.1. index ← ((k >> (i - w)) & (2w+1 - 1)) - 2w-1

3.2.2. For j = 1 to w - ξindex do the following

1. Q ← ECDBL(Q)

2. i ← i - 1

 62

3.2.3. Q ← ECADD(Q, γindexP)

3.2.4. For j = 1 to ξindex do the following

1. If i ≥ 0 then Q ← ECDBL(Q)

2. i ← i - 1

4. If i = 0 do the following

4.1. Q ← ECDBL(Q)

4.2. If k0 = 1 then Q ← ECADD(Q,-P)

5. return Q

 63

CHAPTER 4

4 Contribution of This Thesis

Chapter 3 presents typical methods for exponentiation, where addition of two

points and doubling of two points are performed repeatedly. These methods can

speed up exponentiation by reducing addition, but the doublings are quite costly.

This chapter introduces new formula works with wMOF for speed up

exponentiation on an elliptic over Fp. This formula can increase the speed of

doubling by trading inversion for multiplication. In addition, we show the actual

performance of the newly introduced algorithm and how this formula can improve

wMOF method.

4.1 Direct Computation of 2 1n n
2 (2 P +Q) in affine coordinate

On method to increase the speed of doublings is direct computation of several

doublings, which can compute 2nP directly from P ∈ E(Fq), without computing

the intermediate points 2P,22P,…,2n-1.[28].

Guajardo and Paar[11] suggested increase doubling speed by formulating

algorithms for direct computation of 4P, 8P, and 16P on elliptic curves over F2
m

in terms of affine coordinates. Sakai and Sakurai[28] proposed formulae for

computing 2nP directly (∀n≥1) on E(Fp) in terms of affine coordinates.

These formulas require only one inversion for computing 2nP instead of n

inversions in regular add-double method. Therefore direct computation of several

 64

doublings may be effective in elliptic curve exponentiation because modular

inversion is more expensive than multiplication.

In this thesis we derive formula for computing ()2 1n n2 2 P+Q directly from a

given point P, Q ∈ E(Fp) without computing the intermediate points

1n22P, 2 P, , 2 P,L 1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q),L −−−− where n1≥1, in terms of affine

coordinate. This formula can work with wMOF exponentiation method.

 We begin by constructing formula for small n1, n2, then we will construct

algorithm for general n1, n2.

As an example Let n1 = 2, n2 = 1, let P1 = (x1, y1), Q = (x, y), 1 1 1P (x , y)′ ′ ′= ∈

E(Fp) then for an elliptic curve with weierstrass form in terms of affine

coordinates ′ ′ ′ ′2 1 1 2 2P = 2P = 2(4P +Q) = (x , y) can computed as the following

1) Computing 14P as in [28]

Let

 0 1C = y

 0 1A = x

 2
10B =3x +a

4

2
 0 0

2
 0 0 0

2
1 0

1 0 1

A =B - 8A C

C =-8C - B (A -4A C)

 2 4
1 1 0B 3A 16aC= +

 2
 1
2

2 1 1A =B - 8A C

 4 2
 1 1 12 1 2C =-8C - B (A -4A C)

Then computing 14P = P4 = 4 4(x , y) can be computed as follows.

 65

 2
4 2

0 1

A
x

(4C C)
= (4.1)

 2
4 3

0 1

C
y

(4C C)
= (4.2)

2) Computing 1(4P +Q)

Assume 14P = 4 4(x , y) ≠ -Q. Recall from section 2.3, the point addition

1 1 1P (x , y)′ ′ ′= = 1(4P +Q) in term of affine coordinates, can be computed as follows:

1x′ = λ2 - x- 4x (4.3)

1y′ = λ (x - 1x′) - y (4.4)

4

4

(y - y)
 =

(x - x)
λ (4.5)

Substituting x4, y4 by equations (4.1) and (4.2) respectively into the expression for

λ we readily find

2
3

0 1

2
2

0 1

C
(- y)
(4C C)

 =
A

(- x)
(4C C)

λ (4.6)

After simplification equation (4.6) we get

3
2 0 1

2
0 1 2 0 1

C - (4C C) y
 =

(4C C)(A - (4C C) x)
λ (4.7)

Now let

 3
2 0 1T =C (4C C) y,− 2

2 0 1S A (4C C) x,= − we get:

0 1

T
 =

(4C C)S
λ (4.8)

Substitutingλ , and 4x into the expression for 1x ,′ we find

 66

1x′ =
2

2 2
0 1

T

(4C C) S
 - x- 2

2
0 1

A

(4C C)
 (4.9)

After simplification equation (4.9) we get:

1x′ =
2 2 2

2 0 1
2 2

0 1

T S (A (4C C) x

(4C C) S

− +
 (4.10)

Let 2
2 0 1M A (4C C) x,= + we get:

 1x′ =
2 2

2 2
0 1

T MS

(4C C) S

−
 (4.11)

Let 2 2
0A T MS ,′ = − we get:

1x′ = 0
2 2

0 1

A

(4C C) S

′
 (4.12)

Substitutingλ , and 1x′ from equation (4.12) into the expression for 1y ,′ we find

1y′ =
0 1

T

(4C C)S
 0

2 2
0 1

A
x- -y

(4C C) S

 ′
 
 
 

 (4.13)

After simplification we get:

1y′ =
3 3 2 2

0 1 0 0 1
3 3

0 1

(4C C) yS T(A (4C C) xS)

(4C C) S

′− − −
 (4.14)

Let 3 3 2 2
0 0 1 0 0 1C (4C C) yS T(A (4C C) xS),′ ′= − − − we get:

1y′ = 0
3 3

0 1

C

(4C C) S

′
 (4.15)

3) Computing 12(4P +Q)= ′12P

Recall from section 2.2, the point doubling ′12P = 2 2 2P = (x , y)′ ′ ′ in term of affine

coordinates, can be computed as follows:

′2x = λ2 - 2 1x′ (4.16)

′2y = λ (1x′ - ′2x) - 1y′ (4.17)

 67

λ=
2

11

1

3x a

2y

′ +
′

 (4.18)

Substituting 1x ,′ 1y′ by equations (4.12) and (4.15) respectively into the expression

for λ we readily find

λ=

2
0

2 2
0 1

0
3 3

0 1

A
3 a

(4C C) S

C
2

(4C C) S

 ′
+ 

 
 

 ′
  
 

 (4.19)

After simplification we get:

λ=
2 4 4
0 0 1

0 0 1

3A a(4C C) S

2C (4C C)S

′ +
′

 (4.20)

Now let
′ ′= +2 4 4
0 0 0 1B 3A a(4C C) S , we get:

 λ= 0

0 0 1

B

2C (4C C)S

′

′
 (4.21)

Substitutingλ , and 1x′ into the expression for 2x ,′ we find

′2x =
2
0

2 2 2
0 0 1

B

(2C) (4C C) S

′

′
 - 0

2 2
0 1

A
2

(4C C) S

 ′
 
 
 

 (4.22)

After simplification we get:

′2x =
2

 0 0
2

0 0
2 2 2

0 0 1

B - 8A C

(2C) (4C C) S

′ ′ ′

′
 (4.23)

Let ′ ′ ′ ′2 0 0
2

1 0A =B - 8A C , we get:

′2x = 1
2 2 2

0 0 1

A

(2C) (4C C) S

′

′
 (4.24)

Substitutingλ , ′1y , 1x′ and ′2x into the expression for ′2y , we find

′2y = 0

0 0 1

B

2C (4C C)S

′

′
0

2 2
0 1

A

(4C C) S

 ′
 
 
 

- 1
2 2 2

0 0 1

A

(2C) (4C C) S

 ′
 
 ′ 

- 0
3 3

0 1

C

(4C C) S

′ (4.25)

After simplification we get:

 68

′2y =
4 2

 -0 0 00 1
3 3 3

0 0 1

-8C - B (A 4A C)

(2C) (4C C) S

′ ′ ′ ′ ′

′
 (4.26)

Let 4 2
0 0 1 0 0C =-8C B (A 4A C),′ ′ ′ ′ ′ ′− − we get finally:

 ′2y = 1
3 3 3

0 0 1

C

(2C) (4C C) S

′

′
 (4.27)

Algorithm 4.1 shows the general formulae that allow direct computing

2 1n n2 (2 P +Q) for n1 ≥ 1.

Algorithm 4.1 Direct Computation of 2 1n n
2 (2 P +Q) in affine coordinate,

where n1 ≥≥≥≥ 1, and P, Q ∈∈∈∈ E(Fp) .

INPUT: P1= (x1, y1), Q = (x, y) ∈ E(Fp)

OUTPUT: 4 4 4
4 4

12 2 2
P = 2 P =2 (2P +Q)= (x , y)′ ′ ′ ′ ∈ E(Fp)

1. Compute A0 and C0 and B0

 0 1C = y

 0 1A = x

 2
10B =3x +a

2. For i from 1 to n1 Compute Ai, Ci , for i from 1 to n1 -1 Compute Bi

 2
 i-1 i-1

2
i i-1A =B - 8A C

 4
i-1

2
 i i-1 i-1i-1iC =-8C -B (A -4A C)

 ∏2
i-1

i 4
i i j

j=0

B =3A +16 a(C)

3. Compute the N, V, W, Z then 0A′ , 0C′

1
1

n -1
n 2

2 i
i=0

N A (2 C) x= − ∏

1
1

n -1
n 2

2 i
i=0

V A (2 C) x= + ∏

 69

1
1

n -1
n 3

2 i
i=0

W=C (2 C) y− ∏

= ∏
1

1

k -1
k

i
i=0

Z (2 C)N

′ = −

′ ′= − − −

2 2
0

3 2
0 0

A W VN

C Z y W(A Z x)

4. 2if (n > 0)

 Compute 0B′

 2 4
0 0B 3A aZ′ ′= +

 For i from 1 to n2 Compute i iA , C ′ ′ , for i from 1 to n2 -1 Compute iB′

 2
 i i

2
i i-1A =B - 8AC′ ′ ′ ′

 4 2
 -i-1 i ii i-1 iC =-8C - B (A 4AC) ′ ′ ′ ′ ′ ′

i-1

2 i 4 4
i i 1 j

j=0

B 3A 16 aZ (C)−′ ′ ′= + ∏

 Compute Z

 Z =
2

2

n -1
n

i
i=0

Z(2 C)′∏

5. Compute k k2 22 2
x , y′ ′

 2
n2

n

2 2

A
x

Z

′
′ =

 2
n2

n

2 3

C
y

Z

′
′ =

Theorem 4.1 describes the computational complexity of this formula.

Theorem 4.1 In terms of affine coordinates, there exits an algorithm that

computes 2 1n n2 (2 P +Q) at most (4(n+2) +2) M, (4(n+1) + 2)S , and I in Fp for

 70

any point P,Q ∈ E(Fp) where M, S and I denote multiplication, squaring and

inversion respectively, and n=n1 + n2.

Proof The complexity of step 1 and step 2 the same as in [28, Algorithm1]

involve (2M + 3S)n1 + (M+S)(n1 -1) + S

In step 3, we first compute
1n -1

i
i=0

 C∏ which takes
1
n -1 multiplication. Secondly,

we perform one squaring to compute .
1

1

n -1
n 2

i
i=0

 (2 C)∏ Next, we perform one

multiplication to compute
1

1

n -1
n 2

i
i=0

 (2 C)∏ x. Then we obtain N, and V. Next, we

perform two multiplications, one multiplication to compute
1

1

n -1
n 2

i
i=0

 (2 C) y∏ and

other to compute
1 1 1

1 1 1

n -1 n -1 n -1
n n n2 3

i i i
i=0 i=0 i=0

 (2 C)(2 C) y (2 C) y=∏ ∏ ∏ . Then we obtain W.

Third we perform two squaring to compute ,2 2W ,N and one multiplication to

compute 2VN . Then we obtain 0A′ . Forth, we perform one multiplication to

compute .
1

1

n -1
n

i
i=0

 (2 C)N∏ Then we obtain Z. Next we perform two squaring to

compute 2Z , 4Z ,and one multiplication to compute .3Z Next we perform two

multiplications to compute 2Z x, 3z y . Finally we perform one multiplication to

compute 2
0W(A Z x)′ − . Then we obtain 0C′ . The complexity of step 3 involves (n1

-1)M + 9M +5S .

 71

In step 1 we perform one squaring to compute 2
0A′ . Next we perform one

multiplication to compute 4aZ , where 4Z is computed in step 3. Then we

obtain 0B′ . The complexity of step 4.1 involve M + S and the complexity of step 2

involves (2M + 3S)n2 + (M+S)(n2 -1) as step 2.

In step 3 we compute
2n -1

i
i=0

C′∏ which takes n2-1 multiplications. Secondly, we

perform one multiplication to compute .
2

2

n -1
n

i
i=0

Z(2 C)′∏ Then we obtain new value

for Z. the complexity of sub-step 3 involves n2 M. Hence, the complexity of step 4

involves 4n2 M + 4n2 S.

In step 5, we perform one inversion to compute -1Z and the result is set to T.

Next, we perform one squaring to compute T
2
. Next, we perform one

multiplication to compute .
2

2
n A T′ Then we obtain .n22

 x′ Finally we perform two

multiplications to compute
2

2
n C T T′ . Then we obtain .n22

 y′ The complexity of

step 5 involves 3M + S + I. Therfore the complexity of above computations

involve (4(n+2) +2) M, (4(n+1) + 2)S, where n= n1 + n2. 

4.1.1 The Break-Even Point

For application in practice it is highly relevant to compare the complexity of our

newly derived formulae for direct computing of n doublings separated with one

addition and individual n doublings. The performance of the new method depends

on the cost factor of one inversion relatively to the cost of one multiplication. For

 72

this purpose, we introduce, as [11], the notation of a "break even point". It is

possible to express the time that it takes to perform one inversion in terms of the

equivalent number of multiplication needed per inversion. Table 4.1 shows the

number of squarings S, multiplications M, and inversions I in Fp.

Complexity Calculation

with n

Method

S M I

Break-Even

Point

DECDBL(4) 22 26 1 4

4 doublings + 1 addition 10 9 5

6.6 M < I

DECDBL(5) 26 30 1 5

5 doublings + 1 addition 12 11 6

6 M < I

DECDBL(w) 4w+6 4w+10 1 w

w doublings + 1 addition 2w+1 2w+2 w+1

(3.6 w +12)
M

w

Table 4.1 Complexity comparison: Individual doublings and one addition vs. direct

computation of several doublings with one addition.

 In general let n = n1 +n2, and let us denote the direct computing of

2 1n n2 (2 P +Q) by symbol DECDBL(n). Then our formulae can outperform the

regular double and add algorithm if the following relation to hold:

Cost(separate n ECDBLA + ECADDA) > Cost(DECDBL(n))

Ignoring squarings and additions and expressing the Cost function in terms of

multiplications and inversions, we have:

 (2n M +2n S + n I + 2M + S + I) > (4(n +2)M + 4(n+1)S +2M +2S + I)

We define r = I/M (the ratio of speed between a multiplication and inversion), and

assume that one squaring has complexity S = 0.8 M[28]. We also assume that the

cost of field addition and multiplication by small constants can be ignored. One

can rewrite the above expressions as:

 73

n r M > (2nM + 8M + 1.6n M + 4M)

Solving for r in terms of M one obtains:

(3.6 n +12)
r > M

n

As we can see from Table 4.1, if a field inversion has complexity I > 7.6 M,

direct computation of 3 doublings with one addition may be more efficient than 3

separate doubling and one adding.

4.2 Exponentiation with Direct Computation of 2 1n n
2 (2 P +Q)

By using our previous formulae for direct computation of (),2 1n n2 2 P+Q where

n1 ≥ 1, and P,Q ∈ E(Fp), we can improve algorithm 3.12 for elliptic curve

exponentiation with wMOF by change step 3.2 of algorithm 3.12 with a new step

that compute ()2 1n n2 2 P+Q directly as in the following algorithm.

 Algorithm 4.2 Exponentiation with wMOF Using Direct Computation of
2 1n n

2 (2 P +Q)

INPUT a non-zero t-bit binary string k, a point P and the multiple of the

point P, γ0...tw and ξ0...tw, the precomputed table look-up .

OUTPUT exponentiation kP.

1. i ← t

2. Q ← O

3. While i ≥ 1 do the following

3.1. if (ki XOR ki-1) = 0, then do the following

3.1.1. Q ←ECDBL(Q)

3.1.2. i ← i - 1

3.2. else do the following

3.2.1. index ← ((k >> (i - w)) & (2w+1 - 1)) - 2w-1

 74

3.2.2. if (i < w) Q ← 2 i -(w-ξindex) +1 (2w-ξindex Q + γindexP)

3.2.3 else if (i ≥ w) Q ← 2ξindex (2 w-ξindex Q + γindexP)

3.2.4. i ← i - w

4. If i = 0 do the following

4.1. Q ← ECDBL(Q)

4.2. If k0 = 1 then Q ← ECADD(Q,-P)

5. return Q

In algorithm 4.2, for each window width w of wMOF, Step 3.2.1 performs

direct computation of 2i-(w-ξindex) +1
(2
w-ξindex Q + γindexP) if (i < w) otherwise Step

3.2.2 performs direct computations of 2ξindex
(2
w-ξindex Q+ γindexP) if (i ≥ w), where

ξindex = 0,1,…w-1, γindexP ={±1, ±3, ..., ±(2w-1 - 1)}.

4.2.1 Complexity Analysis of the wMOF Method

In this subsection, we perform an analysis of wMOF method when it used in

conjunction with the ()2 1n n2 2 P+Q formula. In addition, we compare the

complexity of wMOF method, with and without formula. Moreover we derive an

expression that predicts the theoretical improvement of the wMOF method by

using the formulae in terms of the ratio between inversion and multiplication

times.

Theorem 4.2 describes the complexity of algorithm 3.12 for computing

exponentiation with wMOF.

Theorem 4.2 In terms of affine coordinate, Let P ∈ E(Fp), t-digits exponent in

wMOF, then the complexity of algorithm 3.12 for computing kP requires on

 75

average
(2w+4)t (2w+3)t (w+2)t

M + S + I
w+1 w+1 w+1

,where M, S and I denote

multiplication, squaring and inversion respectively.

Proof We noticed that algorithm 3.12 performs an ECADD operation each time

the current digit δ

is non-zero, recall from theorem 3.12 that the average non-zero

density of wMOF is asymptotically
1

+1w
 also, one ECDBL operation is performed

in each iteration (where i ≥ 0) to double the intermediate result. Then on average,

algorithm 3.12 for computing exponentiation with wMOF requires

t
t ECDBL + ECADD

+1w

Recall from table 2.2, the computational costs for doublings and additions

operations in affine coordinate. Then we can rewrite previous expression as:

t
(2M + 2S + I)t + (2M + S + I)

+1w

We can rewrite previous expression in terms of M, S, and I as:

(2 +4)t (2 +3)t (+2)t

M + S + I
+1 +1 +1

w w w

w w w
 

Now Theorem 4.3 describes the complexity algorithm 4.2 for computing

exponentiation with wMOF by using ()2 1n n2 2 P+Q .

Theorem 4.3 In terms of affine coordinate, Let P ∈ E(Fp), and t-digits exponent

in wMOF, then the complexity of algorithm 4.2 for computing kP requires on

 76

average
4(+3)t 4(+2)t 2t

M + S + I,
+1 +1 +1

w w

w w w
 where M, S and I denote multiplication,

squaring and inversion respectively.

Proof From theorem 3.12, for t-digits exponent k in its wMOF, if t → ∞ the

average non-zero density of wMOF is asymptotically
1

+1w
 and wMOF of k is

infinity long sequence constituted from two types of blocks:

1. b1 = (0), length of this block is 1;

2. b2 = (0i * 0
w-i-1), length of this block is w and 0 ≤ i ≤ w - 1;

Then the number of block b2 equals
1

+1w
 because every block b2 has a non-zero

bit, and the number of block b1 equals amount of 0s in wMOF – the amount of 0s

in b2 which equals

1

()()
+1 +1

w
t w 1 t

w w
- - =

+1

t

w

Now, step 3.1 of algorithm 4.2 performs
+1

1
t

w
 blocks b1 and step 3.2 performs

+1

1
t

w
 block b2 then algorithm 4.2 for computing kP requires on average

 ECDBL + DECDBL()
+1 +1

t t
w

w w

Recall from Table 2.2, the computational costs for doublings and additions

operations in affine coordinate. Then we can rewrite previous expression as:

n
(2M+2S+I + 4(+2)M +4(+1)S+2M +2S+I)

+1
w w

w

 77

We can rewrite previous expression in terms of M, S, and I as:

4(+3)t 4(+2)t 2t

M + S + I
+1 +1 +1

w w

w w w
 

Relative Improvement

Let us denote the times it would take to perform exponentiation by using

algorithms 3.12, and 4.2 by symbols TRegular method, TFormula method respectively.

According to theorems 4.2, and 4.3, we can derive expressions for the time it

would take to perform a whole exponentiation with wMOF as:

TRegular method =
(2 +4)n (2 +3)n (+2)n

M + S + I
+1 +1 +1

w w w

w w w
 (4.28)

TFormula method =
4(+3)n 4(+2)n 2n

M + S + I
+1 +1 +1

w w

w w w
 (4.29)

Notice that from equations 4.28, and 4.29, one can readily derive the relative

improvement by defining r = I/M (the ratio of speed between a multiplication and

inversion) as:

Relative Improvement =
Regular method Formula method

Regular method

T - T

T
 (4.30)

By using (4.28) and (4.29)

Relative Improvement =
[() ()]

() [() ()]

wI 2w 8 M 2w 5 S

w 2 I 2w 4 M 2w 3 S

- + + +

+ + + + +
 (4.31)

In our implementation S ≈ M and r = 12.6, let w = 4, then

Relative Improvement is
()

()

4 r 29

6 r 23

-
=

+
 (4.32)

Relative Improvement is
(.)

(.)

4 12 6 29
100

6 12 6 23

-
= ´

+
= 21.7 % (4.33)

 78

4.3 Implementation and Results

In this section, we implement our methods and others, which have been given in

previous sections to show the actual performance of exponentiation.

Implementation of an ECC system have several choices, these include selection of

elliptic curve domain parameters, platforms [6].

4.3.1 Elliptic Curves domain parameters and Platforms

Generating the domain parameters for elliptic curve is vary time consuming. It

consists of a suitably chosen elliptic curve E defined over a prime finite field Fp,

and a base point G ∈ E(Fp). Therefore we select NIST-recommended elliptic

curves domain parameters in [24]. We implement 4 elliptic curves over prime

fields Fp, the prime modulo p are of a special type (generalized Mersenne

numbers) with 2log p =160, 192, 224, 256. We call these curves as P160, P192,

P224, or 256 respectively. The parameters of these curves are in Appendix B.

The ECC is implemented on a Pentium 4 personal computer (PC) with 2 GHz

processor and 512 MB of RAM. Programs were written in Java language for

multi-precision integer operations, and are ran under Windows XP.

We used jBorZoi Library[4] in this implementation. jBorZoi is a Java Elliptic

Curve Cryptography which implements cryptographic algorithms using elliptic

curves defined over binary finite fields. We extended jBorZoi Library to

implement cryptographic algorithms using elliptic curves defined over prime

finite fields. Complete code listings are provided in Appendix B.

 79

4.3.2 Timings analysis of wMOF Exponentiation Method
We performed timing measurements on the individual k doublings and one

addition operations and the corresponding formulae for direct computation of one

addition adjoint with k doublings. In addition, we developed timing estimates

based on the approximately ratio of speed between a multiplication and inversion

I/ M in prime filed Fp as presented in Table 4.2.

Curves Average Timing
(µsec) for M

Average Timing
(µsec) for S

Average Timing
(µsec) for I

r = I / M

P160 7.0 6.9 88.0 12.6
P192 8.7 8.6 108.8 12.5

P224 10 9.8 123.1 12.3

P256 11.9 11.8 145.2 12.2

Table 4.2 The ratio of speed between a multiplication and inversion in prime filed Fp

4.3.2.1 Optimal Window Size

To show the actual improvement of wMOF method with our new formula we

must find out the most efficiency proper window size, where the length of input

binary form is 160-bits, 192-bits, 224-bits, or 256-bits. Figures (4.1- 4.4) illustrate

the relation among the window size w, the speed of the evaluation and pre-

computed processes. We can noticed from these Figures that when the window

size increases, time of the evaluation will decrease, while time of the

precomputation will increase, and the optimal w is 4 when the input is 160-bits.

and the optimal w is 5 when the inputs is 192, 224 or 256-bits. So all the tests in

this thesis will be processed for w = 4 in 160-bits input and w= 5 for 192, 224, or

256-bits.

 80

Figure 4.1 Pre-compute and evaluation with 160-bits input

Figure 4.2 Pre-compute and evaluation with 192-bits input

3 4 5 6

0

1 0

2 0

3 0

4 0

5 0

6 0

T
im

e
 o
f
c
o
m
p
u
ta
ti
o
n
 i
n
 m

e
s
c

W in d o w S iz e (w)

 P r e c o m p u te
 e v a lu ta io n
 s u m

3 4 5 6

0

10

20

30

40

50

60

T
im

e
 o
f
c
o
m
p
u
ta
ti
o
n
 i
n
 m

e
s
c

W indow S ize (w)

 Precom pute
 evalu taion
 sum

 81

Figure 4.3 Pre-compute and evaluation with 224-bits input

Figure 4.4 Pre-compute and evaluation with 256-bits input

4.3.2.2 The performance of wMOF method

Table 4.3 shows how the wMOF can outperform the binary method (Add-Double)

by taking the optimal window size w.

3 4 5 6

0

1 0

2 0

3 0

4 0

5 0

6 0
T
im

e
 o
f
c
o
m
p
u
ta
ti
o
n
 i
n
 m

e
s
c

W in d o w S iz e (w)

 P r e c o m p u te
 e v a lu ta io n
 su m

3 4 5 6

0

10

20

30

40

50

60

T
im

e
 o
f
c
o
m
p
u
ta
ti
o
n
 i
n
 m

e
s
c

W indow S ize (w)

 Precompute
 evalutaion
 sum

 82

Time in mesec # Pre- computed points
Curves

Add- Double wMOF Add- Double wMOF

P 160 27.1 22.6 0 3
P 192 41.5 33.15 0 7
P 224 54.8 46.2 0 7
P 256 73.3 60.3 0 7

Table 4.3 Comparison of add-double method vs. wMOF method to perform an

exponentiation

4.3.2.3 The performance of improved wMOF method

Using Table 4.2, we can readily predict that the timings for performing a

exponentiation with and without the formulae presented in Algorithm 4.1. In

addition, using the complexity shown in theorems (4.2, 4.3) and the timings

shown in Table 4.2 we can make estimates as to how long an exponentiation with

wMOF will take using both doublings with formulae and individual doublings.

% Improvement
 Curves Method

Predicted
Timing

Measured
Timing

 Predicted Measured
wMOF with formula (w = 4) 17.4 18.3

P 160
wMOF (w = 4) 22.2 23.4

21.62 21.7

wMOF with formula (w = 5) 23.8 24.3
P 192

wMOF (w = 5) 32 32.6
25.62 25.7

wMOF with formula (w = 5) 31.7 33.9
P 224

wMOF (w = 5) 42 45
24.52 24.6

wMOF with formula (w = 5) 43.8 47.4
P 256

wMOF (w = 5) 57.3 61.8
23.5 23.3

Table 4.4 Average time comparison required to perform an exponentiation without pre-

computations stage of a random point in mesc (Pentium IV 2.0 GHz).

 83

CHAPTER 5

5 Conclusion

This thesis presented several methods which can be taken to efficiently implement

cryptosystems on smart cards.

As explained in Chapter 1, one of the most critical issues concerning

cryptosystems is the security of the secret key which is used for signing and

decrypting messages. Due to their tamper resistance and mobility, smart cards are

a good choice to serve as host for the secret keys and the cryptosystems. However,

since the computational power and the available memory on smart cards are very

limited, efficient implementations are needed.

The first measure to reduce the memory and computational power required is

to use cryptosystems that are based on the additive group of points on an elliptic

curve. The main advantage of elliptic curves over commonly used groups is, that

the same level of security can be achieved with much smaller key sizes, i.e. 160-

bit instead of 1024-bit.

As it turned out, exponentiation is the most basic operation used in elliptic

curve cryptosystems. We construct efficient algorithm for exponentiation on

elliptic curve defined over Fp in terms of affine coordinates. The algorithm

computes ()2 1n n2 2 P+Q directly from random points P and Q on an elliptic

curve, without computing the intermediate points. We have showed in what way

the formula for computing 2 1k k2 (2 P +Q) can improve the speed of the

 84

exponentiation with wMOF. A comparison was made based on notation of a

"break even point." which is the cost factor of one inversion relatively to the cost

of one multiplication. This algorithm can speed the wMOF exponentiation of

elliptic curve of size 160-bit about (21.7 %) as a result of its implementation with

respect to affine coordinates.

 85

Appendix A Mathematical Background

A.1 Basic Algebra

We provide here the essential algebraic terminologies and concepts required for

the understanding of the studies on elliptic curves.

Definition A.1 A nonempty set of elements G is said to form a group (G, •) if in

G there is defined an operation, called the product and denoted by •, such that

1. a, b ∈ G implies that a•b ∈ G (closure).

2. a, b, c ∈ G implies that a•(b•c) = (a•b)•c (associative law).

3. There exists an element e ∈ G such that a•e = e•a = a for all a ∈ G (the

existence of an identity element in G).

4. For every a ∈ G there exists an element a-1 ∈ G such that a• a-1 = a-1•a = e

(the existence of inverses in G).

Definition A.2 A group G is said to be abelian (commutative) if a•b = b•a for all

a, b ∈ G.

Definition A.3 A field is a nonempty set of elements F with two operations,

addition “+” and multiplication “×”, such that

1. (F , +) is an abelian additive group.

2. (F\{0}, ×) is an abelian multiplicative group, where 0 denotes the additive

identity element.

3. The distributive laws hold in F.

From now on, F will always denote a field and F* will denote the group of

nonzero elements of F, unless otherwise stated.

 86

Definition A.4 The characteristic of F, denoted by char(F), is defined to be the

smallest positive integer p such that pa = 0 for all a ∈ F. If such an integer does

not exist, char(F) is zero.

Definition A.5 A finite field Fq is a field that has a finite number q of elements.

In particular, for a prime p, Fp is the field of equivalence classes of integers

modulo p and thus has a finite number p of elements.

Definition A.6 A field K is said to be an extension of F if K contains F.

Definition A.7 The ring of polynomials F [x] in x over F is the set of all formal

expressions f(x) = a0 + a1x+
…
 + anx

n ≥ 0, ai∈ F for all i = 0, 1, …, n.

Definition A.8 Let f(x)∈ F[x], If f(x) ≠ 0 and an ≠T 0, then the degree of f(x),

written as deg f(x), is n.

Definition A.9 F is said to be algebraically closed if for every fT (x) ∈ F[x] of deg

f(x) ≥ 1, f(x) has a root in F.

Definition A.10 Let F be a field and let V be an additive abelian group. V is

called a vector space over F if an operation F × V  V is defined so that the

following conditions are satisfied:

1. a(u + v) = au + av

2. (a + b)u = au + bu

3. a(bu) = (a . b)u

4. 1u = u

The elements of V are called vectors and the elements of F are called scalars.

Definition A.11 Let V be a vector space over a field F and let v1, v2,…., vm ∈ V .

Any vector in V of the form

 87

c1v1 + c2v2 + …. + cmvm

where ci ∈ F (i = 1,…,m) is a linear combination of v1, v2,…., vm. The set of all

such linear combinations is called the linear span of v1, v2,…., vm and it is denoted

by span(v1, v2,…., vm). The vectors v1, v2,…., vn are said to span or generate V if

V = span(v1, v2,…., vn).

Definition A.12 Let V be a vector space over a field F. The vectors v1, v2,…., vm

∈ V are said to be linearly independent over F if there are no scalars c1, c2,…., cm

∈ F (not all 0) that satisfy

c1v1 + c2v2 + …. + cmvm = 0

Definition A.13 A set S = {u1, u2,…., un} of vectors is a basis of V if and only if u1,

u2,…., un are linearly independent and they span V. If S is a basis of V, then every

element of V is uniquely represented as a linear combination of the elements of S.

If a vector space V has a basis of a finite number of vectors, then any other basis

of V will have the same number of elements. This number is called the dimension

of V over F.

A.2 Projective Space

Definition A.10 The affine plane A2(F) over F is the usual plane, A2(F) ={(x, y)|

x, y∈ F }.

Definition A.11 Define an equivalence relation on the triples over F, not all

components zero, as follows: (X, Y, Z) : (X , Y , Z)′ ′ ′′ ′ ′′ ′ ′′ ′ ′ if and only (X , Y , Z)′ ′ ′′ ′ ′′ ′ ′′ ′ ′ = λ(X,

Y, Z) for some λ in F*. Then each equivalence class (X, Y, Z) is called a projective

 88

point and the numbers X, Y, Z are called the homogeneous coordinates of that

point. For instance, 1 1 2
4 2 3

(, ,) is equivalent to (3, 6, 8) (use λ = 12).

The set of equivalence classes with respect to : is called 2-dimensional projective

space over F and is denoted P2. The equivalence class of (X, Y, Z) in P2 is

typically written [X, Y, Z] to avoid confusion with affine space.

Definition A.12 The projective plane P2(F) over F is the set of all projective

points.

P2(F)={ [X, Y, Z] |X ,Y, Z not all zero}

For each projective point has Z ≠ 0, a typical element [X, Y, Z] is equivalent to

[x, y, 1], where x = X/Z, y =Y/Z. The set of these points is a copy of A2(F).

For each projective point has Z = 0, a typical element like [X, Y, 0]. Note that

either X or Y is nonzero if X ≠ 0, then the [X, Y, 0] is equivalent to Y
X

[1, , 0]

which is essentially a copy of A1(F). If X = 0, then the typical point has the form

[0, Y, 0], which is equivalent to [0, 1, 0] since Y is nonzero. Thus the set of these

points is union of A1(F) and the point [0, 1, 0], which is essentially a copy of

P1(F). This set is often referred to as the “line at infinity".

Therefore the projective plane P2(F) can be thought of as a disjoint union of

the affine plane A2(F) with the line at infinity.

 89

Appendix B

B.1 Recommended NIST Elliptic Curves over Prime Fields

The following parameters are given for each elliptic curve:

P The order of the prime field Fp.

a,b The coefficients of the elliptic curve b ax x y 32 ++= where a, b pF ∈

 and 0)27b (4a 23 ≠+ . The selection a = -3 was made for reasons of

 efficiency;

xG, yG The x and y and coordinates of the base point G.

n The (prime) order of G

h The co-factor.

P-160: p = 2160 −2933, a = -3, h = 1,

b = 621468235513391651506736229084534968416800501622

xG = 915905815259634185505956735251349426573212034266

yG = 143158991128202063035631472543963517040298418778

n = 1452046121366725933991671292371452349213344743009

P-192: p = 2192 -264 - 1, a = -3, h = 1,

b = 0x 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

XG = 0x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

yG = 0x 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

P-224: p = 2224 - 296 +1, a = -3, h = 1,

b = 0x B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943

2355FFB4

xG = 0x B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6

 90

115C1D21

yG = 0x BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199

85007E34

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945

5C5C2A3D

P-256: p = 2256 - 2224 + 2192 +296
 - 1, a = -3, h = 1,

b = 0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6

3BCE3C3E

 27D2604B

xG= 0x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0

F4A13945

 D898C296

yG= 0x 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE

CBB64068

 37BF51F5

n = 0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84

F3B9CAC2

 FC632551

B.2 Complete Java code

package com.dragongate_technologies.borZoi;
import java.math.*;
import java.util.Date;
public class ECurveFp
 extends ECurve {
 protected static final BigInteger ZERO = BigInteger.ZERO;
 /**
 * <code>constant</code> 1
 */
 protected static final BigInteger ONE = BigInteger.ONE;
 /**
 * <code>constant</code> 2
 */
 protected static final BigInteger TWO = new BigInteger("2");
 /**

 91

 * <code>constant</code> 3
 */
 protected static final BigInteger THREE = new BigInteger("3");
 /**
 * <code>constant</code> 4
 */
 protected static final BigInteger FOUR = new BigInteger("4");
 /**
 * <code>constant</code> 8
 */
 protected static final BigInteger EIGHT = new BigInteger("8");
 /**
 * <code>constant</code> 12
 */
 protected static final BigInteger TWELVE = new BigInteger("12");
 /**
 * <code>constant</code> 16
 */
 protected static final BigInteger SIXTEEN = new BigInteger("16");
 public ECurveFp(Fp a4, Fp a6) {
 this.a4 = (Fp) a4.clone();
 this.a6 = (Fp) a6.clone();
 }

 public ECPoint doubl(ECPoint P0) {
 BigInteger a, b, lambda, x0, y0, x1, y1, x2, y2;
 a = a4.val;
 b = a6.val;
 x0 = P0.x.val;
 y0 = P0.y.val;
 x1 = P0.x.val;
 y1 = P0.y.val;
 ECPointFp P2 = new ECPointFp();
 if ((P0.isZero())||(P0.y.isZero())) {
 return P0;
 }
 else {
 lambda = Fp.Fp_mul(x0, x0).multiply(BigInteger.valueOf(3));
 lambda = Fp.Fp_add(a, lambda);
 lambda = Fp.Fp_mul(lambda, Fp.Fp_inv(y0.multiply(BigInteger.valueOf(2))));
 x2 = Fp.Fp_add((x0.negate()).multiply(BigInteger.valueOf(2)),
 Fp.Fp_mul(lambda, lambda));
 y2 = Fp.Fp_mul(Fp.Fp_add(x0, x2.negate()), lambda);
 y2 = Fp.Fp_add(y2, y0.negate());
 P2.x.val = x2;
 P2.y.val = y2;

 92

 }
 return P2;
 }
 public ECPoint add(ECPoint P0, ECPoint P1) {
 BigInteger a, b, lambda, x0, y0, x1, y1, x2, y2;
 a = a4.val;
 b = a6.val;
 x0 = P0.x.val;
 y0 = P0.y.val;
 x1 = P1.x.val;
 y1 = P1.y.val;

 ECPointFp P2 = new ECPointFp();
 if (P0.isZero()) {
 return P1;
 }
 if (P1.isZero()) {
 return P0;
 }
 if (P0.x.compareTo(P1.x) != 0) {
 lambda =
 Fp.Fp_mul(
 Fp.Fp_add(y0, y1.negate()),
 Fp.Fp_inv(Fp.Fp_add(x0, x1.negate())));
 x2 = Fp.Fp_add(x0.negate(), Fp.Fp_mul(lambda, lambda));
 x2 = Fp.Fp_add(x2, x1.negate());
 y2 = Fp.Fp_mul(Fp.Fp_add(x0, x2.negate()), lambda);
 y2 = Fp.Fp_add(y2, y0.negate());
 P2.x.val = x2;
 P2.y.val = y2;
 }
 else if (P0.y.compareTo(P1.y) != 0) {
 return P2;
 }
 else if (P1.x.isZero()) {
 return P2;
 }
 else {
 return doubl(P0);
 }
 return P2;

 }

 public ECPoint mul(BigInteger n, ECPoint P) {
 ECPoint Q;

 93

 ECPoint S = new ECPointFp();
 BigInteger k;
 if (n.compareTo(BigInteger.valueOf(0)) == 0) {
 return new ECPointFp();
 }

 if (n.compareTo(BigInteger.valueOf(0)) < 0) {
 k = n.negate();
 Q = P.negate();
 }
 else {
 k = n;
 Q = P;
 }

 for (int j = k.bitLength() - 1; j >= 0; j--) {
 S = doubl(S);
 if (k.testBit(j))
 S = add(S, Q);
 }
 return S;
 }
 public ECPoint[] pre_ECpoints(ECPoint P) {
 int m;
 ECPoint[] G;
 m = Pre_Table.pow(2, Pre_Table.Win - 1);
 G = new ECPoint[m];
 G[1] = P;
 G[2] = doubl(P);
 for (int j = 1; j < m / 2; j++) {
 G[(2 * j + 1)] = add((G[(2 * j - 1)]), (G[2]));
 }
 return G;
 }
 public ECPoint Im_wMOF(BigInteger d, ECPoint P) {
 Date d1,d2;
 long x1,x2;
 ECPoint Q = new ECPointFp();
 ECPoint P1 =new ECPointFp();
 ECPoint[] G;
 ECPoint infinty, K;
 BigInteger tk;
 int m, index, i;
 String s;
 char n_bits[];
 m = Pre_Table.pow(2, Pre_Table.Win - 1);

 94

 int tw = Pre_Table.pow(2, Pre_Table.Win);
 s = new String(" ");
 s = d.toString(2);
 n_bits = new char[s.length() + 1];
 s.getChars(0, s.length(), n_bits, 1);
 n_bits[0] = '0';
 infinty = new ECPointFp();
 Q = infinty;
 i = s.length();
 index = 0;
 int j;
 // precomputation stage
 G = pre_ECpoints(P);
 while (i >= 1) {
 j = s.length() - i;
 if (n_bits[j] == n_bits[j + 1]) {
 Q = doubl(Q);
 i = i - 1;
 }
 else {
 index = (d.shiftRight(i - Pre_Table.Win)).intValue();
 index = (index & (2 * tw - 1)) - tw / 2;
 if (Pre_Table.gama[index] > 0)
 P1 =G[Pre_Table.gama[index]];
 else if (Pre_Table.gama[index] < 0)
 P1= G[- (Pre_Table.gama[index])].negate();
 if (i < Pre_Table.Win)
 Q =D_Mu(Q,P1,Pre_Table.Win - Pre_Table.zeta[index],i-
(Pre_Table.Win –
 Pre_Table.zeta[index])+1);
 else
 Q =D_Mu(Q,P1,Pre_Table.Win -
Pre_Table.zeta[index],Pre_Table.zeta[index]);
 i=i-(Pre_Table.Win);
 }
 }
 if (i == 0) {
 Q = doubl(Q);
 if (n_bits[s.length()] == '1') {
 Q = add(Q, P.negate());
 }
 }
 return Q;
 }

 public ECPoint wMOF(BigInteger d, ECPoint P) {

 95

 Date d1,d2;
 long x1,x2;
 ECPoint Q = new ECPointFp();
 ECPoint P1 = new ECPointFp();
 ECPoint[] G;
 ECPoint infinty, K;
 BigInteger tk;
 int m, index, i;
 String s;
 char n_bits[];
 m = Pre_Table.pow(2, Pre_Table.Win - 1);
 int tw = Pre_Table.pow(2, Pre_Table.Win);
 s = new String(" ");
 s = d.toString(2);
 n_bits = new char[s.length() + 1];
 s.getChars(0, s.length(), n_bits, 1);
 n_bits[0] = '0';
 infinty = new ECPointFp();
 Q = infinty;
 i = s.length();
 index = 0;
 int j;
 // precomputation stage
 G = pre_ECpoints(P);
 while (i >= 1) {
 j = s.length() - i;
 if (n_bits[j] == n_bits[j + 1]) {
 Q = doubl(Q);
 i = i - 1;
 }
 else {
 index = (d.shiftRight(i - Pre_Table.Win)).intValue();
 index = (index & (2 * tw - 1)) - tw / 2;
 for (int jj = 1; jj <=(Pre_Table.Win - Pre_Table.zeta[index]); jj++) {
 Q = doubl(Q);
 i = i - 1;
 }
 if (Pre_Table.gama[index] > 0) {
 Q = add(Q, G[Pre_Table.gama[index]]);

 }
 else if (Pre_Table.gama[index] < 0) {
 Q = add(Q, G[- (Pre_Table.gama[index])].negate());

 }
 for (int jj = 1; jj <= Pre_Table.zeta[index]; jj++) {

 96

 if (i >= 0) {

 Q = doubl(Q);
 }
 i = i - 1;
 }
 }
 }

 if (i == 0) {
 Q = doubl(Q);
 if (n_bits[s.length()] == '1') {
 Q = add(Q, P.negate());
 }
 }
 return Q;
 }

 public ECPoint D_exp(ECPoint Q,int k) {
 ECPointFp P2 = new ECPointFp();
 if (Q.isZero()) {
 return P2;
 }
 if (Q.y.isZero()) {
 return P2;
 }
 else {
 BigInteger[] A,B,C;
 BigInteger DK,FB,RB,BK_2,U, BK_4,BK_S,CK_S,BK_T4,T,T_2,A_B;
 DK=ZERO;
 FB=ONE;
 BK_4=ONE;
 A=new BigInteger[k+1];
 B=new BigInteger[k+1];
 C=new BigInteger[k+1];
 U=ONE;
 A[0]=Q.x.val;
 B[0]=(Q.y.val);
 // C[0]=Fp.Fp_add(Fp.Fp_mul(THREE,Fp.Fp_pow(A[0],2)),a4.val);
 for (int jj = 1; jj <= k ; jj++) {
 if (jj == 1)
 U = a4.val;
 else if (jj > 1)
 U = Fp.Fp_mul(U, BK_4);
 C[jj-1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[jj-1],
 2)),Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, jj-1), U));

 97

 BK_2=Fp.Fp_mul(B[jj-1],B[jj-1]);
 BK_4=Fp.Fp_mul(BK_2,BK_2);
 A_B=Fp.Fp_mul(A[jj-1],BK_2);
 A[jj]=Fp.Fp_add (Fp.Fp_pow(C[jj-
1],2),Fp.Fp_mul(A_B,EIGHT).negate());
 B[jj]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[jj-1],

Fp.Fp_add(A[jj],Fp.Fp_mul(FOUR,A_B).negate())).negate());
 }
 for (int ii = 0;ii<k ;ii++)
 FB= Fp.Fp_mul(FB,B[ii]);
 FB=Fp.Fp_mul(FB,Fp.Fp_pow(TWO,k));
 T= Fp.Fp_inv(FB);
 T_2=Fp.Fp_pow(T,2);
 P2.x.val=Fp.Fp_mul(A[k],T_2) ;
 P2.y.val=Fp.Fp_mul(B[k],Fp.Fp_mul(T_2,T)) ;
 }
 return P2;
 }
 public ECPoint D_Mu(ECPoint Q,ECPoint P1,int k1, int k2) {
 ECPointFp P2 = new ECPointFp();
 BigInteger[] A,B,C;
 BigInteger DK,FB,RB,BK_2,U, BK_4,BK_S,CK_S,BK_T4,T,T_2,A_B
 ,t,s,m,x,y,FB_2,s_2,t_B,s_A,d;
 DK=ZERO;
 s_2=ONE;
 s=ONE;
 FB=ONE;
 BK_4=ONE;
 A=new BigInteger[Pre_Table.Win+1];
 B=new BigInteger[Pre_Table.Win+1];
 C=new BigInteger[Pre_Table.Win+1];
 U=ONE;
 if ((Q.isZero())||(Q.y.isZero())) {
 A[0]=P1.x.val;
 B[0]=P1.y.val;
 d = a4.val;
 }
 else {
 x=P1.x.val;
 y=P1.y.val;
 A[0]=Q.x.val;
 B[0]=(Q.y.val);
 for (int jj = 1; jj <= k1 ; jj++) {
 if (jj == 1)
 U = a4.val;

 98

 else if (jj > 1)
 U = Fp.Fp_mul(U, BK_4);
 C[jj-1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[jj-1], 2)),
 Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, jj-1), U));
 BK_2=Fp.Fp_mul(B[jj-1],B[jj-1]);
 BK_4=Fp.Fp_mul(BK_2,BK_2);
 A_B=Fp.Fp_mul(A[jj-1],BK_2);
 A[jj]=Fp.Fp_add (Fp.Fp_pow(C[jj-
1],2),Fp.Fp_mul(A_B,EIGHT).negate());
 B[jj]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[jj-1],

Fp.Fp_add(A[jj],Fp.Fp_mul(FOUR,A_B).negate())).negate());
 }
 for (int ii = 0;ii<k1 ;ii++)
 FB= Fp.Fp_mul(FB,B[ii]);
 FB=Fp.Fp_mul(FB,Fp.Fp_pow(TWO,k1));
 FB_2=Fp.Fp_mul(FB,FB);
 s_A=Fp.Fp_mul(FB_2,x);
 if (A[k1].compareTo(s_A) != 0){
 s=Fp.Fp_add(A[k1],s_A.negate());
 t_B=Fp.Fp_mul(Fp.Fp_mul(FB_2,FB),y);
 t=Fp.Fp_add(B[k1],t_B.negate());
 s=Fp.Fp_add(A[k1],s_A.negate());
 m=Fp.Fp_add(A[k1],s_A);
 s_2=Fp.Fp_mul(s,s);
 A[0]=Fp.Fp_add(Fp.Fp_mul(t,t),Fp.Fp_mul(m,s_2).negate()) ;

B[0]=Fp.Fp_add(Fp.Fp_mul(Fp.Fp_mul(s,s_2),t_B),Fp.Fp_mul(t,Fp.Fp_add
 (A[0],Fp.Fp_mul (s_2,s_A).negate()))).negate();
 d = Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, k1), Fp.Fp_mul (Fp.Fp_mul(
 U,Fp.Fp_mul(s_2,s_2)), BK_4));
 }
 else {
 U = Fp.Fp_mul(U, BK_4);
 C[k1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[k1], 2)),
Fp.Fp_mul
 (Fp.Fp_pow (SIXTEEN, k1), U));
 BK_2=Fp.Fp_mul(B[k1],B[k1]);
 BK_4=Fp.Fp_mul(BK_2,BK_2);
 A_B=Fp.Fp_mul(A[k1],BK_2);
 A[0]=Fp.Fp_add
(Fp.Fp_pow(C[k1],2),Fp.Fp_mul(A_B,EIGHT).negate());
 B[0]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[k1],
 Fp.Fp_add(A[0],Fp.Fp_mul (FOUR,A_B).negate())).negate());
 s=Fp.Fp_mul(B[k1],TWO);
 d = Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, k1+1),Fp.Fp_mul(U, BK_4));

 99

 }
 }
 for (int jj = 1; jj <= k2 ; jj++) {
 if (jj == 1) U = d;
 else if (jj > 1) U = Fp.Fp_mul(U, BK_4);
 C[jj-1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[jj-1],2)),
 Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, jj-1), U));
 BK_2=Fp.Fp_mul(B[jj-1],B[jj-1]);
 BK_4=Fp.Fp_mul(BK_2,BK_2);
 A_B=Fp.Fp_mul(A[jj-1],BK_2);
 A[jj]=Fp.Fp_add (Fp.Fp_pow(C[jj-
1],2),Fp.Fp_mul(A_B,EIGHT).negate());
 B[jj]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[jj-1],

 Fp.Fp_add (A[jj],Fp.Fp_mul(FOUR,A_B).negate())).negate());
 }

 for (int ii = 0;ii<k2 ;ii++)
 FB= Fp.Fp_mul(FB,B[ii]);
 FB=Fp.Fp_mul(FB,Fp.Fp_pow(TWO,k2));
 FB=Fp.Fp_mul(FB,s);
 T= Fp.Fp_inv(FB);
 T_2=Fp.Fp_pow(T,2);
 P2.x.val=Fp.Fp_mul(A[k2],T_2) ;
 P2.y.val=Fp.Fp_mul(B[k2],Fp.Fp_mul(T_2,T)) ;
 return P2;
 }
 protected Object clone() {
 return new ECurveFp((Fp) a4, (Fp) a6);
 }
}

 100

Bibliography

[1] A Certicom, white Paper. Remarks on the security of the elliptic

curve cryptosystem. September 1997.

http://www.certicom.com/research/wecc3.html

[2] ANSI X9.62,The elliptic curve digital signature algorithm

(ECDSA), draft standard, 1997.

[3] Avanzi, R., A Note on the Signed Sliding Window Integer Recoding

and a Left-to-Right Analogue, Selected Areas in Cryptography SAC

2004, LNCS 3357, Springer, 2004, pp. 130-143.

[4] borzoi 1.02 - an open source Elliptic Curve Cryptography Library by

Dragongate Technologies Ltd. April 2004.

http://www.dragongate-technologies.com

[5] Braden Phillips ,Minimal Weight Digit Set Conversions , Member,

IEEE, and Neil Burgess, Member, IEEE

[6] Brown, M. , Hankerson, D. , Lopez, J. , and Menezes, A.,

Software Implementation of the NIST Elliptic Curves Over Prime

Fields, Topics in Cryptology - CT-RSA 2001, LNCS 2020, (2001),

250-265.

http://www.certicom.com/research/wecc3.html
http://www.dragongate-technologies.com/

 101

[7] Cohen, H., Miyaji, A., Ono, T., Efficient Elliptic Curve

Exponentiation Using Mixed Coordinates, Advances in Cryptology –

ASIACRYPT ’98, LNCS 1514, Springer, 1998, pp. 51-65

[8] Diffie, W., and Hellman, M., New directions in cryptography, IEEE

Transactions on Information Theory, vol. IT-22, no. 6, 1976, pp. 644-

654

[9] Enge, A. Elliptic curves and their cryptography. Kluwer Academic

Publishers, 1999.

[10] Gordon, D., A survey of fast exponentiation methods, Journal of

Algorithms, vol.27, (1998), 129-146.

[11] Guajardo, J., Paar, C., "Efficient Algorithms for Elliptic Curves

Cryptosystem", Advances in Cryptography-CRYPTO'97, LNCS,

1294(1997), Springer-Verlage, 342-356.

[12] J. Jedwab and C.J. Mitchell, Minimum Weight Modified Signed-

Digit Representations and Fast Exponentiation,” Electronics Letters,

vol. 25, no. 17, pp. 1171-1172, 1989.

[13] Joye, M., and Yen, S.-M., Optimal Left-to-Right Binary Signed-digit

Exponent Recoding, IEEE Transactions on Computers 49(7), (2000),

740-748.

 102

[14] Koyama, K. and Tsuruoka, Y., Speeding Up Elliptic Curve

Cryptosystems using a Signed Binary Windows Method, Advances

in Cryptology-CRYPTO ’92, LNCS740, (1992), 345-357.

[15] Menezes, A. J., van Oorschot, P. C. and Vanstone. S. A., Handbook

of Applied Cryptography. CRC Press,1997.

[16] Miller, V.S., Use of Elliptic Curves in Cryptography, Advances in

Cryptology - CRYPTO ’85, LNCS 218, Springer, 1986, pp. 417-426.

[17] Miyaji, A. , Ono, T., and Cohen , H., Efficient Elliptic Curve

Exponentiation, Information and Communication Security - ICICS

1997, LNCS 1334, Springer, 1997, pp. 282-291.

[18] Moller, B. , Improved Techiques for Fast Exponentiation Information

Security and Cryptology - ICISC 2002, LNCS 2587, Springer, 2003,

pp.298-312.

[19] Monico, C., Semirings and Semigroup Actions in Public-Key

Cryptography. PhD thesis, University of Notre Dame, May 2002

.

[20] Morain, F., Olivos, J., Speeding Up the Computations on an Elliptic

Curve using Addition-Subtraction Chains, Theoretical Informatics

and Applications, vol. 24, no. 6, 1990, pp.531-543.

[21] Muir, J., Stinson, D., Alternative Digit Sets for Nonadjacent

http://www.cacr.math/
http://www.cacr.math/

 103

Representations, University of Waterloo,

[22] Muir, J., Stinson, D., Minimality and Other Properties of the Width-w

Nonadjacent Form, University of Waterloo, Technical Report CORR

2004-08, 2004, available at http://www.cacr.math. uwaterloo.ca.

[23] Muir, J., Stinson, D., New Minimal Weight Representations for Left-

to-Right Window Methods, University of Waterloo, Technical Report

CORR 2004-19, 2004, available at http://www.cacr.math.

uwaterloo.ca.

[24] National Institute of Standard and Technology, Digital Signature

Standard, FIPS Publication 186-2, February 2000.

[25] NIST,FIPS PUB $180-2$: Secure Hash Standard, Aug. 2002.

[26] Okeya, K., Schmidt-Samoa, K., Semay, O., Takagi, T., Analysis of

Some Efficient Window Methods and their Application to Elliptic

Curve Cryptosystems.2004.

[27] Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T., Signed Binary

Representations Revisited, Advances in Cryptology – CRYPTO

2004, LNCS 3152, Springer, 2004, pp. 123-139,

[28]

Sakai, Y., Sakurai, K., Efficient Scalar Multiplications on Elliptic

Curves with Direct Computations of Several Doublings. IEICE

 104

Tranc.Fundamentals, E84-A No.1 (2001), 120-129.

[29] Schneier, B., Applied Cryptography: Protocols, Algorithms, and

Source Code in C, Wiley, 1995.

[30] Smart N. P., A comparison of different finite fields for use in elliptic

curve cryptosystems, June 2000

[31] Solinas, J. A. An improved algorithm for arithmetic on a family of

elliptic curves. In Advances in Cryptology - CRYPTO '97 (1997), B.

S. Kaliski, Jr., Ed., vol. 1294 of Lecture Notes in Computer Science,

pp. 357- 371.

[32] Stallings.W., Cryptography and Network Security - Principles and

Practice. Prentice Hall, 2nd edition, 1999.

[33] Win, E., Mister, S., Preneel, B., and Wiener, M., On the Performance

of Signature Schemes Based on Elliptic Curves, Algorithmic Number

Theory, ANTS-III, LNCS 1423, (1998), 252-266

	Introduction
	Elliptic Curves
	Weierstrass Equations
	The Group Law
	Addition Formulas
	
	Addition Formulas in Affine Coordinates
	Addition Formulas in Projective Coordinates

	Elliptic Curves over Finite Fields
	Counting the number of points
	Discrete Logarithm Problem for Elliptic Curves
	Optimizing ECC Implementations
	Domain Parameters
	Coordinate Systems

	Elliptic Curve Exponentiation
	Base-2 Representations of Integers
	Algorithms for Elliptic Curve Exponentiation
	Binary Methods
	Right-to-Left Binary Method
	Left-to-Right Binary Method
	Why Left-to-Right

	Sliding Window applied on NAF
	The width-w Non Adjacent Form (wNAF)
	The width-w Mutual opposite Form (wMOF)
	The Mutual opposite Form (MOF)
	Generation of The width-w Mutual opposite Form (wMOF)

	Contribution of This Thesis
	Direct Computation of �in affine coordinate
	The Break-Even Point

	Exponentiation with Direct Computation of
	Complexity Analysis of the wMOF Method

	Implementation and Results

	Conclusion

