
BIRZEIT UNIVERSITY 

FACULTY OF GRADUATE STUDIES 

 
 

EFFICIENT  ELLIPTIC  CURVE  CRYPTOSYSTEMS 

 USING  EFFICIENT  EXPONENTIATION 

 
 
by 
 
 

Kamal Darweesh 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirement for the 

Master Degree in Scientific Computing From the Graduate  

Faculty at Birzeit University 

 

 

 

 

Supervisor  
 

Professor Mohammad Saleh 
   Department of Mathematics 

 
 
 
 

 
  

Birzeit, Palestine 
August, 2006 

 
 



 II 

EFFICIENT  ELLIPTIC  CURVE  CRYPTOSYSTEMS 

 USING  EFFICIENT  EXPONENTIATION 

 
 
by 
 
 

Kamal Darweesh 

 
 
 
 

This thesis was successfully defended on August 3, 2006 and approved  
 
 

by: 
 
 

         Committee Members                           Signature              
                   
                            1.  Professor Mohammad Saleh                .……………. 
                             
                            2 Associate Professor Hasan Yousef         .……………. 
                        
                            3.  Associate Professor Wasfi El Kafri      .……………. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 III 

ABSTRACT 

The explosive growth in the use of mobile and wireless devices demands a public 

key cryptosystem (PCK) achieving aspects of information security with 

accommodate limitations on power and bandwidth, at the same time keeping with 

high level of security.  

Elliptic curve cryptosystem (ECC) are new generation of public key 

cryptosystems that has smaller key sizes for the same level of security. The 

exponentiation in elliptic curve is the most important operation in ECC, So when 

put the ECC into practice, the major problem is how to enhance the speed of the 

exponentiation. It is thus of great interest to develop algorithms for 

exponentiation, which allow efficient implementations of ECC. 

In this thesis, we improve efficient algorithm for exponentiation on elliptic 

curve defined over Fp in terms of affine coordinates. The algorithm computes 

( )2 1n n2 2 P+Q  directly from random points P and Q on an elliptic curve, without 

computing the intermediate points. Moreover, we apply this algorithm on 

exponentiation on elliptic curve with wMOF and analyze their computational 

complexity. This algorithm can speed the wMOF exponentiation of elliptic curve 

of size 160-bit about (21.7 %) as a result of its implementation with respect to 

affine coordinates. 
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CHAPTER 1 
 

1 Introduction  
 
Cryptography is the science of securely transmitting messages from a sender to a 

receiver. So the need of cryptography is on the increase, it enable people to 

communicate securely.  People interact electronically, through e-mail, e-

commerce, ATM machines, or mobile.  A cryptosystem is a system of algorithms 

for encrypting and decrypting messages for this purpose.  Many of modern 

cryptosystems have been proposed to achieve aspects of information security as 

confidently, data integrity, authentication, and non-repudiation.  

1. Data integrity: service guarantees that the content of the message, that was 

sent, has not been tampered with. 

2. Confidentiality: service protects against unauthorized disclosure of the 

information. 

3. Authentication: service related to identification, and consists of two 

components data origin and entity authentication. 

4. Non-repudiation: service protects against denial by one of the entities 

involved in a communication of having participated in all or part of the 

communication.  

In order to obtain these aspects of information security, cryptographers have 

developed a toolbox of cryptographic primitives such as encryption schemes and 

digital signature. These primitive called cryptographic schemes and are also so-

called cryptosystems [32]. 
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The purpose of encryption schemes is to cover confidentiality of encrypting 

the message.  This is done by an encryption function E.  The reverse process, the 

decryption, is done by a decryption function D. Besides the message m, the 

encryption function requires the input of an encryption key e. It returns the 

encrypted message, the ciphertext c.  The ciphertext and a decryption key d are 

the input for the decryption function which returns the original message, the 

plaintext. The respective formulas are given as 

                                                   Ee(m) = c        ,           Dd(c) = m  

There are two mainly different approaches to encrypt messages: symmetric 

schemes, and symmetric schemes.  

In symmetric schemes encryption and decryption are performed using the 

same secret key.  This method is known as secret key or symmetric cryptography. 

Suppose Alice wishes to securely communicate some plaintext to Bob. She 

generally accomplishes this by applying an encryption function E to the plaintext, 

obtaining ciphertext.  Bob must have the inverse function D, and it should not be 

easy for an eavesdropper to recover the plaintext from the ciphertext.  

 

Figure 1.1 Secret-key schemes 

 
While the encryption and decryption with symmetric schemes is very fast, it 

has drawback, namely the key-exchange between communicating parties. When 

                  Alice                                                          Bob 
                  key  kkkk                                                     key   kkkk     
         
 Plaintext                                Ciphertext c                                              
                                                                                          Plaintext  
  m                                                                                           m 
                                                                                                     

E D 
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the sender and the receiver are physically apart, they want to agree on the secret 

key without anyone else finding out.  Then they must share a secret key through 

secure channel. Consequently, in a large system many secret keys must typically 

be generated, stored, managed, and destroyed in a highly secure way.  If, for 

example, n entities want to securely communicate with each other, then there are 

n(n-1)/2 secret keys that must be generated, stored, managed, and destroyed. 

Another approach to agree on secret key between two parties is using a trusted 

third party to prevent the disclosure of the secret key.  Unfortunately, this method 

has many disadvantages.  The most important disadvantage is that each entity 

must unconditionally trust the of third party and share a secret key with it.  There 

are situations in which this level of trust is neither justified nor can be accepted by 

the communicating entities.  

In 1976 Whitfield Diffie and Martin Hellman [8] published their paper “New 

Directions in Cryptography” and proposed the Diffie-Hellman (DH) key 

Exchange protocol [8] which allows users to exchange secret keys over an 

insecure channel without any prior shared secret.  This paper resolves the key-

exchange problem and becomes the theoretical concept of asymmetric schemes. 

 

 

 

 

 
 
 

Figure 1.2  Diffie-Hellman Key Exchange protocol 

1. Alice and Bob agree on some finite group G and an element g ∈ G. 

2. Alice privately chooses an integer a ∈ {1,…|g|}, and computes  

                                   α = ga. She sends α to Bob 

3. Bob privately chooses an integer b ∈{1,…|g|}, and computes  

                                  β = gb. He sends β to Alice. 

4. Alice and Bob can both compute  

k = gab = (ga)b = (gb)a as common secret key. 
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In a asymmetric schemes, each user gets a pair of keys: private key for 

decryption which is kept secret, and public key for encryption which can be made 

public for that reason asymmetric schemes are also referred to as public-key 

schemes.  It is computationally infeasible to deduce the private key from the 

public key.  Anyone who has a public key can encrypt information but cannot 

decrypt it.  Only the person who has the corresponding private key can decrypt the 

information.  

 

Figure 1.3  Asymmetric schemes 

 
Digital signature schemes work similar to asymmetric schemes, namely they 

are based on a complex mathematical problem.  They are designed to provide the 

digital counterpart to handwritten signatures to provide data integrity, data origin 

authentication, and non-repudiation.  A digital signature is generated based on the 

content of the message being signed and some secrets known only to the signer 

including the private key and the signing key.  It must be verifiable by any user in 

the system without accessing the signer's secret information.  

There are only three classes of public key cryptosystems that are considered to 

be both secure and efficient. They are classified below according to the 

mathematical problem on which they are based [1]. 

                  Alice                                                          Bob 
       Bob’s Public key                                             Bob’s private key    
                
                                                                                                  
 Plaintext                         Ciphertext c                            Plaintext  
  m                                                                                           m 
                                                                                                     

E D 
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1. Integer factorization systems: security is based on the intractability of the 

integer factorization problem (IFP). Examples include RSA and Rabin 

signature schemes. 

2. Discrete logarithm systems: security is based on the intractability of the discrete 

logarithm problem (DLP) in a finite field. Examples include ElGamal, and 

DSA. 

3. Elliptic curve discrete logarithm systems: security is based on the intractability 

of the elliptic curve discrete logarithm problem (ECDLP).  Examples include 

Elliptic Curve Digital Signature Algorithm (ECDSA). 

 

Elliptic curve cryptosystem ECC is new generation of public key 

cryptosystem that is based on the difficulty of ECDLP.   ECC has advantage over 

the systems which are based on the multiplicative group of a finite field (Fq). As a 

result, the fastest algorithm known for solving the discrete logarithm systems DLP 

in the multiplicative group (Fq) is index-calculus method which solves the DLP in 

sub-exponential time [18], and the best known algorithm for solving the ECDLP 

in this group is Pollard-rho algorithm, it takes about 
2

n π  steps, where a step 

here is an elliptic curve addition, n is the number of elliptic curve points, these 

steps takes full exponential time [2][18][19].  Consequently, one can use an 

elliptic curve group that is smaller in size with the same level of security 

maintained.  The outcomes are smaller key sizes, bandwidth savings and faster 
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implementations.  Such characteristics are particularly attractive for security 

applications where computational power and integrated circuit space are limited.  

The elliptic curve cryptographic operations like encryption/decryption, 

schemes generation/verification signature require computing of exponentiation on 

elliptic curve.  The computational performance of elliptic curve cryptographic 

protocol such as Diffie-Hellman Key Exchange protocol strongly depends on the 

efficiency of exponentiation, because it is the costliest operation.  Thus it is very 

attractive to speed up of exponentiation, which allow for efficient 

implementations of elliptic curve cryptosystems. 

Three are three ways to speed up of exponentiation: choosing optimal 

underlying field, on which modular reduction is efficient or on which inversion is 

efficient, reducing the number of additions, and reducing the number of 

multiplications and squirings of underlying field by using efficient point 

coordinate system or mixed coordinate systems [7].   

There are two mainly types of elliptic curve exponentiation algorithms of the 

second way: algorithms for a fixed point, and algorithms for a random point.  

These algorithms can compute elliptic curve exponentiation by repeating 

additions and doublings, where the repeated number of additions can be reduced 

by a suitable algorithm, but that of doublings can not be reduced.  

1.  Exponentiation algorithms for a fixed point: compute an elliptic curve 

exponentiation by repeating only additions and no doubling.  In this case, the 

precomputation table method [10] is useful.  
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2. Exponentiation algorithms for a random point: compute an elliptic curve 

exponentiation by repeating additions and doubling.  In this case, the addition-

subtraction method is usually mixed with the window method [10][20][18][26].  

The binary method is the standard algorithm for computing exponentiation in 

the case of a random point.  It based on the binary representation of the exponent, 

the elliptic addition point is performed if scanned bit of exponent is one and 

doubling of elliptic point is performed regardless of scanned bits, so this method 

also so-called add-double.  It can scan the bits of exponent from left to right or 

from right to left, and can be generalized to use base-2 representation.  So the 

average number of addition of elliptic points operations required by the binary 

method or the general binary method depends on the minimal hamming weight of 

the exponent.  Here, the fact that points on an elliptic curve can be inverted at 

negligible costs proved very useful, namely the effort for precomputing the 

required points can be reduced by more than 50%, if the exponent is represented 

in a signed representation.  

There are several base-2 representations which have minimal hamming weight, 

namely the Width-w Non Adjacent Form (wNAF) and siding window on some 

signed binary representations. While those representations speed up the 

exponentiation in the best possible way.  The generation of the wNAF and the 

recoding of signed binary digits for sliding window are only possible starting at 

the least significant bit, i.e. right-to-left. Therefore, the recoding of the n-bit 

exponent must be performed in a separate stage and the whole recoded exponents 
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must be stored, which requires memory of the order of magnitude of n bits for 

both base-2 representations.  

 This problem is solved by using base-2 representation Width-w Mutual 

Opposite Form (wMOF) which provides the same minimal hamming weight of 

exponent as the wNAF.  Their great advantage is, that they can be generated from 

left-to-right which means, that the recoding doesn’t have to be done in a separate 

stage, but can be performed on-the-fly during the evaluation. As a result, it is no 

longer necessary to store the whole recoded exponent, but only small parts at once. 

In detail, the wMOF requires only memory of the order of magnitude of w bits, 

which is very small compared to n-bits. 

Another approach to speed up exponentiation is by increasing the speed of 

doublings.  One method to speed the doublings is direct computation of several 

doubling, which computes 2nP directly from P ∈ E(Fq), without computing 

intermediate points 2P,22P,…,2n-1.  Sakai and Sakurai [28] proposed formulae for 

computing 2nP directly (∀n ≥1) on E(Fp) in terms of affine coordinates.  Since 

modular inversion is more expensive than multiplication, this formula requires 

only one inversion for computing 2nP instead of d inversions in regular add-

double method.  

In this thesis, first we derive formula to compute ( )2 1n n2 2 P+Q  directly from 

P, Q ∈ E(Fp), without computing intermediate points 1n22P,2 P, ,2 PL , 

1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q)L −−−− , where n1≥1.  Secondly, we use this formula to 

improve evaluation stage for computing exponentiation with wMOF method.  
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Furthermore, we show in what way this new derived formula can improve the 

speed of the exponentiation with wMOF.  A comparison was made based on 

notation of a "break even point" which is the cost factor of one inversion 

relatively to the cost of one multiplication.  

This thesis is organized as follows: Chapter 2 gives background on elliptic 

curve and discuses their various properties. Chapter 3 presents base-2 

representation of integer and introduces algorithms for the efficient computation 

of elliptic curve exponentiation.  Those were the binary and the general binary 

methods which use minimal hamming weight signed representations of the 

exponent, namely the wNAF, siding window on some applied on NAF and 

wMOF which left to right minimal hamming weight representation. Finally 

derived formula for direct computation of several doubling of elliptic points in 

affine coordinates is presented. Chapter 4 presents new formula for computing 

( )2 1n n2 2 P+Q  directly from P, Q ∈ E(Fp), without computing intermediate 

points 1n22P,2 P, ,2 PL .  Chapter 4 also shows in what way this formula can 

improve the speed of the exponentiation with wMOF.  Finally Chapter 5 provides 

concluding remarks and discussion. 
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CHAPTER 2 

2 Elliptic Curves  

Elliptic curves were found as a result of studying the problem of the arc length of 

an ellipse. To compute the arc length one integrates a function 

involving y = f(x) , and the answer is given in terms of certain functions on 

“elliptic” curve  2y = .f(x)   

More recently, elliptic curves have been used in devising efficient algorithm 

for factoring integers and for primality proving.  In mid 1980’s, Koblitz and 

Miller independently proposed the use of a group of points of elliptic curves, 

defined over a finite field, to be used for cryptographic purpose [2].  

First we must to discuss elliptic curves and their various properties. 

2.1 Weierstrass Equations  

Let F be a field.  Consider the following homogeneous cubic equation, called the 

Weierstrass equation: 

 2 3 3 2 2 3
1 3 2 4 6Y Z + a XYZ + a Y Z  = X  + a X Z + a XZ  + a Z ,     1 6a , ,a K.∈∈∈∈K  (2.1) 

Now consider the polynomial K(X, Y, Z) defined to be the left hand side of 

(2.1) minus its right hand side. Let F  be the algebraic closure of F, and let 

{{{{ }}}}2E = [X, Y, Z] (F)  K(X, Y, Z) = 0 .∈∈∈∈P                       (2.2) 
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E is called the projective curve defined by Weierstrass equation, and the number 

of points on E (the cardinality) is denoted #E(F ). 

Definition  2.1  Let a plane projective curve E, an element [X, Y, Z] ∈ E for 

which 

K K K
(X,Y, Z), (X,Y, Z), (X,Y, Z) (0,0,0)

X Y Z

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂    
====    ∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂    

               (2.3) 

is called a singular point, and E is said to be smooth, or non-singular curve if 

there are no singular points in E. 

Definition 2.2 An elliptic curve over the field F, is a smooth curve E defined by 

an Weierstrass equation in the form of (2.1).  

Definition 2.3 Let E be an elliptic curve over the field F defined by an 

Weierstrass equation in the form of (2.1).  Let F  be the algebraic closure of F, we 

define the set E(F ) of F -rational points as follows: 

 

{{{{ }}}}2E(F) = [X, Y, Z] ( )  K(X, Y, Z) = 0 .∈∈∈∈P F                        (2.4) 

When we just write E we mean the set of F -rational points, i.e. E =E( ) F  (all 

the points on the curve)  

Recall from Appendix A.2 that 2 ( )P F  is a disjoint union of 2 ( )A F  and the 

line at infinity; let's study the intersection of E with each such piece. First we to 

study the intersection of E with line at infinity i.e. when the condition Z = 0 holds 

in addition to the equation which defines E.  
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If K(X, Y, Z) = 0 is an equation defining an elliptic curve over F, then we see 

from (2.1) that  

K(X, Y, Z) = 0 ⇔ X3 = 0 ⇔ X= 0,  

 and Y is allowed to be anything. Thus, E intersects the line at infinity in the 

points [0, Y, 0], however, since Y ≠ 0, these are all (by the equivalence relation) 

the same point [0, 1, 0].  So, E intersects the line at infinity in the single point Ο  = 

[0, 1, 0].  

Now, to study the intersection of E with 2 ( )A F , we need to see what happens 

when Z ≠ 0. Every element [X, Y, Z] ∈ 2 ( )P F for which Z ≠ 0 has a unique 

representative [x, y, 1], where x = X
Z

 and y = Y
Z

.  

Dividing the original equation for E by Z3, we get 

 64
2

2
3

31
2 a  xa  xa x y a xy a  y +++=++       1 6a , ,a F.K ∈∈∈∈                   (2.5) 

which is an equation in only two variables.  This is Weierstrass non-homogeneous 

equation, and leads to the affine representation of E. 

Now consider the polynomial f(x, y) defined to be the left hand side of (2.5) 

minus its right hand side.  We define the set of F -rational points    

{{{{ }}}}2E(F) = (x,y) ( )  f(x, y) = 0 U∈∈∈∈A F {Ο }                      (2.6) 

Definition 2.4 Let E be a curve given by a non-homogeneous Weierstrass equation 

(2.6). Define the quantities 

2
2 1 2d  = a + 4a  

4 4 1 3d  = 2a  + a a  
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2
6 3 6d  = a 4a++++  

2 2 2
8 1 6 2 6 1 3 4 2 3 4d  = a  a  + 4a a  - a a a  + a a  - a  

2 3 2
2 8 4 6 2 4 6= -d  d  - 8d - 27d  + 9d d d∆  

2
4 2 4c  = d  - 24d   

3
4 = c /j(E) ∆  

The quantity ∆  is called the discriminant of the Weierstrass equation, while j(E) 

is called the j-invariant of E if ∆≠ 0. 

Theorem 2.5 The curve E is nonsingular (that is, it’s an elliptic curve) if and only 

if ∆≠ 0  

For a proof of the above theorem, see [9]. 

For fields F with various characteristics, we can transform the Weierstrass 

equation (2.5) into different forms of equations of an elliptic curve E by using 

linear change of variables. We split it into 3 cases: char(F) ≠ 2,3, char(F) = 3 and 

char(F) = 2. The corresponding admissible change of variables will be given in 

each case. 

1. char(F) ≠ 2,3: 

If char(F) ≠ 2, and the change of variables                                                    

1 3a x a
2
++++

→ −→ −→ −→ −y y
 

is performed, then the left side of (2.5) after the substitution for y becomes: 

1 3a x a 2
2

(  -  )
++++

y + a1x(y - 1 3a x a
2
++++

) + a3(y - 1 3a x a
2
++++

) = . . . 
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                                                        · · · = y 2 - 
2 2
1a

4

x
- 1 3a a

2

x
-

2
3a

4
 

Both, xy and y have vanished, so their coefficients a1 and a3 must equal zero.  

That reduces the left side to a single y2, and (2.5) becomes: 

y2
 = x3

 + a2x
2 + a4x + a6                                             (2.7) 

Further, if char(F) ≠ 3, and the change of variables 

2a
3

−−−−x x→  

is performed, then the right side of (2.5) after the substitution becomes: 

 ( 2a
3

−−−−x )3 + a2( 2a
3

−−−−x )2 + a4( 2a
3

−−−−x ) + a6 = . . . 

                                                             . . . = x3 + 2
4

a
( + a )  

9
x  + 2

27
3
2a  - 1

3
a2a4a6 

Setting ( 1
9

a2 + a4) = a, and 2
27

3
2a  - 1

3
a2a4a6 = b, we have shorter form of 

Weierstrass non-homogeneous equation:  

y2
 = x3

 + ax + b                                              (2.8)                                   

Recall from theorem 2.5, the curve E is nonsingular or smooth if and only if 

∆≠ 0.  For Weierstrass equation of the form (2.8), we have d2 = 0, d4 = 2a, d6 = 4b, 

d8 = -a2, c4 = -48a, c6 = -864b, and ∆  = -16(4a3 + 27b2).  Therefore E is smooth if 

and only if  (4a3 + 27b2) ≠ 0 . 

2. char(F) =3: 

If a2 ≠ 0, and the change of variables   

 4

2

a
a

++++→x x  

is performed, then the right side of (2.7) after the substitution becomes: 
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( 4

2

a
a

++++x )3 + a2( 4

2

a
a

++++x )2 + a4( 4

2

a
a

++++x ) + a6 = . . .  

                                                  . . . = x3 + a2 
2x  + 

2 2 3 3
2 4 2 4

3
2

a a a a
a
+ ++ ++ ++ +

 

Setting a2 = a, and 
2 2 3 3
2 4 2 4

3
2

a a a a
a
+ ++ ++ ++ +

 = b, we have Weierstrass non-homogeneous 

equation of the form:  

y2
 = x3

 + ax
2 + b                                                   (2.9)  

If a2 = 0, then by setting a4 = a, and a6= b from (2.7), we immediately have the 

same form (2.8)  

3. char(F) =2: 

Case 1. The supersingular case,  j(E)  = 0, i.e. a1 = 0:  

When the change of variables 

 2a++++→x x  

is performed, then left side of (2.5) becomes: 

  y2 + a3y  

and the right side of (2.5) after the substitution becomes: 

( 2a++++x )3 + 2a ( 2a++++x )2 + 4a ( 2a++++x ) + 6a  = . . .  

                                                        . . . = x3 + 2
4 2(a a )++++ x  + 2 3

2 2 4 2a a a a+ ++ ++ ++ +     

Setting a3 = a, 2
4 2(a a )++++  = b, and 2 3

2 2 4 2a a a a+ ++ ++ ++ +  = c, we have Weierstrass non-

homogeneous equation of the form:  

  y2 + ay = x3
 + bx + c                                       (2.10) 

Case 2. The nun-supersingular case,  j(E)  ≠ 0, i.e. a1 ≠ 0:  
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When the change of variables 

3

1

a2
1 a

a ++++→x x  

is performed, then (2.5) after the substitution for x becomes: 

  y2 + a1( 3

1

a3
1 a

a ++++x )y + a3y = 3

1

a3 3
1 a

(a )++++x + a2
3

1

a3 2
1 a

(a )++++x  + a4
3

1

a3
1 a

(a )++++x  + a6  (2.11) 

 
After the simplification, (2.11) becomes: 

y2 + 3
1a xy= 6

1a 3
x + 3 4

1 3 2 1(a a a a ) 2
+ x + 2 2

3 4 1(a a a )+ x +
3 2 2 3
3 3 2 1 4 3 1 1 6

3
1

a a a a a a a a a

a
( )

+ + ++ + ++ + ++ + +
(2.12) 

Now if the change of variables 

2 2
3 1 4 3
1 3

1

a a a

a
a

++++
→ +→ +→ +→ +y y  

is performed, then the left side of (2.12) after the substitution for y becomes: 

2 2
1 4 3

3
1

a a a3 2
1 a

(a )
++++

++++y +
2 2
1 4 3

3
1

a a a3 3
1 1 a

a (a )
++++

++++x y y =. . .  

                                                   . . .= 6
1a 2y

 + 6

2 2 2
1 4 3

1

)(a a a

a

++++
 + 6

1a xy + 2 2
3 4 1(a a a )+ x   

Finally (2.12) after the divide by 6
1a  becomes:  

y2 + xy= 3x + 3 2 1
3
1

(a a a )

a

2+
x +

3 3 2 4 5 6 2 2 2( )
1 3 3 2 1 4 3 1 1 6 1 4 3

12
1

( )
a a a a a a a a a a a a a

a

+ + + − ++ + + − ++ + + − ++ + + − +
   (2.13) 

Setting 3 2 1
3
1

(a a a )

a

+
 = a, and 

3 3 2 4 5 6 2 2 2( )
1 3 3 2 1 4 3 1 1 6 1 4 3

12
1

( )
a a a a a a a a a a a a a

a

+ + + − ++ + + − ++ + + − ++ + + − +
 = b, we 

have Weierstrass non-homogeneous equation of the form:  

  y2 + xy = x3
 + ax

2 + b                                      (2.14) 
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2.2 The Group Law 

In what follows, we shall define the operation of addition in the group of points on an 

elliptic curve E over a field F.   

Let E be an elliptic curve given by the Weierstrass equation (2.5) to add two 

points on the curve P and Q together, pass a straight line through them and look 

for the third point of intersection with the curve, R.  Then reflect the point R over 

the x-axis to get –R, the sum of P and Q.  Thus, P + Q = –R.  The idea behind this 

group operation is that the three points P, Q, and R lie on a common straight line, 

and the points that form the intersection of a function with the curve are 

considered to add up to be zero as in Figure 2.1.  If P = Q then the line to be 

constructed is the tangent of E at P, and P + Q =2P as in Figure 2.2. 

. 
Figure 2.1 Elliptic curve point addition 

P 

 

Q 
R 

-R= P+Q 
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Now we want to define the identity element of E, Therefore, we find an extra 

point of intersection where E meets the line connecting P,Q and the point at 

infinity Ο, and call this point P + Q.  By joining Ο  to a point R on E, we mean 

that a vertical line is drawn through P, Q.  Hence, the point at infinity Ο is the 

additive identity element and P + Q + R = Ο  or P + Q = -R, (the inverse of R). 

Now we want to define the inverse of a point P= (x1, y1) ∈ E.  Let P= (x1, y1), 

Q=(x2,y2) ∈ E.  Notice, that if x1 = x2 then  

2 2
1 1 1 1 3 1 2 1 1 2 3 2y + a x y  + a y  = y  + a x y  + a y  ,  

and hence either 

y1 = y2        i.e.  P = Q 

or 

y2 = -y1 - a1x1 - a3 

Figure 2.2 Elliptic curve point doubling 

R 

-R =2P 

P 



 19

Now define the inverse -P of the point P thus: 

-P = (x1, -y1 - a1x1 - a3). 

From the previous definitions it follows that: 

For all P, Q ∈ E, 

1. Ο + P = P and P + Ο  = P.  That is, Ο is the identity element. 

2. -Ο = Ο 

3. If P = (x1, x2) ∈ Ο, then -P = (x1 , -y1 - a1x1 - a3). 

4. Q = -P, then P + Q = Ο. 

5. If P ≠ Ο; Q ≠ Ο , Q ≠ -P, then let R be the third point of intersection 

(counting multiplicities) of either the line which intersects P and Q if P ≠ 

Q, or the tangent line to the curve at P if P = Q, with the curve.  Then P + 

Q = -R. 

6. P + Q = Q + P. 

Now we can prove that the above rules make the points on an elliptic curve 

into an (abelian) group.  The only group law that is not an immediate consequence 

of the geometrical rules is the associative law.  It can be proved with following 

proposition   

Proposition  2.6  Let L1, L2, L3 be three lines that intersect a cubic curve in nine 

points P1, . . . , P9 (counting multiplicity) and let 1L′′′′ , 2L′′′′ , 3L′′′′  be three lines that 

intersect the cubic curve in nine points Q1, . . . ,Q9. If Pi = Qi for i = 1, . . . , 8, then 

also P9 = Q9. 

The six lines are set as follows 

L1 : the line through P,Q and -(P +Q) 
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L2 : the line through R,-R and Ο 

L3 : the line through -P,-(Q+R) and S = P +(Q+R) 

1L′′′′  : the line through Q, R and -(Q+R) 

2L′′′′ : the line through P,-P and Ο 

3L′′′′ : the line through -(P +Q),-R and  S′′′′ = (P + Q) +R 

Now the lines L1, L2, L3 and 1L′′′′ , 2L′′′′ , 3L′′′′  have eight points of intersection in 

common, namely P,-P,Q,R,-R,-(P + Q),-(Q + R) and Ο.  One can therefore 

conclude that S = S′′′′  which proves the associativity.  

2.3 Addition Formulas  

Let P and Q be two distinct rational points on elliptic curve E.  The straight line 

joining P and Q must intersect the curve at one further point, R, since we are 

intersecting a line with a cubic curve.  The point R will also be rational since the 

line, the curve and the points P and Q are themselves all defined over F.  If we then 

reflect R in the x-axis, we obtain another rational point which we shall call P + Q as in 

Figure 2.1.  

There are different addition formulas for fields of char(F) ≠ 2,3, char(F) = 3 

and char(F) = 2.  This section explains how to derive explicit formulas for point 

additions and point doublings where the char(F) ≠ 2,3 in affine and projective 

coordinate systems.  For simplicity, we look at elliptic curves defined over the real 

number field R. 
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2.3.1 Addition Formulas in Affine Coordinates 

Let P = (x1, y1) and Q = (x2, y2) ∈ E defined by an Weierstrass non-homogeneous 

equation (2.8) with P ≠ -Q.  The equation of the line L which intersects P and Q is 

given as 

                                            L : y = λx + β,                                                       (2.15) 

Then P + Q = (x3, y3) can be computed as follows: 

Case1  P≠ Q   

In this case λ  is slope of intersected L  
 

2 1

2 1

(y  - y )
 = 

(x  - x )
λ ,    β = y1-λx1 

The third point where L intersects the curve is R = (xR, yR).  Since P + Q = (x3, y3) 

= (xR, -yR) = -R (the inverse of R, where a1, a3 = 0), holds and inserting this into 

(2.15) yields a formula for the y-coordinate of P + Q. 

yR =  λxR + β 

 y3 = - λx3 + β 

= -λx3 - y1 + λx1 

= λ(x1 - x3) - y1 

The x-coordinate of P + Q is obtained by inserting (2.15) into the equation of the 

ellptic curve defined by an Weierstrass equation in the form of (2.8).  This yields  

(λx + β)2 = x3 + ax + b 

  0 = x3 - λ2x2 + (a - 2λβ)x - λ2 + b 
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This equation can be solved by using the fact that the sum of the roots of a monic 

polynomial is equal to minus the coefficient of the variable of the second highest 

power.  The three roots are x1, x2, x3 and the coefficient is -λ2.  Therefore x1 + x2 

+ x3 = λ2 holds and since two of those roots are given by the x-coordinates of the 

points P and Q, x3 can be calculated. Hence, the formula for a point addition in 

affine coordinates is:  

x3 = λ2   - x1 - x2 

                                    y3 =λ (x1 - x3) - y1                                                         (2.16) 

2 1

2 1

(y  - y )
 = 

(x  - x )
λ  

 
Case 2:  P = Q  

In this case λ  is given as the derivative 

2 
1

1

3x ady
 = 

dx 2y
λ

++++
====  

in P = (x1, y1), because the line L is now the tangent on the curve in P.  The 

formula for a point doubling in affine coordinate can be derived by using the same 

arguments as above and is given as 

x3 =λ2  - 2x1 

y3 = λ (x1 - x3) - y1                                                                               (2.17) 

2 
1

1

3x a

2y
λ

++++
====                                                                      

Note, that x1 = x2 holds in that case.  

The drawback of affine coordinates is, that the required field inversion is very 
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costly compared to multiplications and squarings.  To avoid inversions, alternative 

coordinate systems such as projective coordinates are used. 

2.3.2 Addition Formulas in Projective Coordinates 

Recall from section 2.1 that every element [X, Y, Z] ∈ P
2
(F) for which Z ≠ 0 has 

a unique representative [x, y, 1], where x = X
Z

 and y = Y
Z

.  The transformation 

between affine and Projective coordinates is: 

 (x, y) ∈ A
2
(F)  [x, y, 1] ∈ P

2
(F) 

[X, Y, Z] ∈ P
2
(F)   (X/Z, Y/Z) ∈ A

2
(F) 

When we apply the transformation (2.18) on Weierstrass non-homogeneous 

equation (2.8) and multiply by a power of Z to clear denominators we get 

homogeneous equation: 

Y2Z = X3
 + aXZ2

 + bZ3                                                                                     (2.19) 

To get the formula for a point addition in projective coordinates we apply 

transformation (2.18) to (2.16) as follows: 

Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P≠ ±Q, and P + Q = (X3, Y3, Z3).  Then 

3x  

2
2 1

2 1 1 2
2

1 22 1

2 1

Y Y
 

Z Z X X
=  -  - 

Z ZX X

Z Z

æ öç ÷-ç ÷ç ÷ç ÷è ø

æ öç ÷-ç ÷ç ÷ç ÷è ø

 

       

2
2 1 1 2 2 1 1 2 1 2

2 1 1 2 1 2

Y Z -Y Z X Z - X Z -2X Z
= - 

X Z -X Z Z Z

æ ö æ öç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷è ø è ø
 

Let u = 2 1 1 2Y Z -Y Z ,  v = 2 1 1 2X Z -X Z ; this yields 

(2.18) 
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 3x =
2

1 2

1 2

-2X Z
- 

Z Z

u v

v

æ öæ ö ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷è ø è ø
 

Let A= u2 1 2Z Z  - v3 -2v2 1 2X Z ; this yields 

3x =
1 2

A

Z Z2v
= 3

3

X

Z
 

3y  

2 1

2 1 31 1

1 3 12 1

2 1

Y Y
 

Z Z XX Y
=  - 

Z Z ZX X

Z Z

æ öç ÷-ç ÷ç ÷ æ öç ÷è ø ç ÷-ç ÷ç ÷æ öç ÷è øç ÷-ç ÷ç ÷ç ÷è ø

 

3y
2 1 1 2 1 1

2 1 1 2 1 11 2

Y Z -Y Z X A Y
=  - 

X Z -X Z Z ZZ Z2v

æ öæ öç ÷ç ÷ç ÷-ç ÷ç ÷ç ÷ç ÷ç ÷è øè ø
 

1 2 1 2

1 2 1 2

X Z -A Y Z
= -

Z Z Z Z

2 3

2 3

u v v

v v v

æ öæ öç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø
 

1 2 1 2

1 2

X Z -A)- Y Z
= 

Z Z

2 3

3

u(v v

v
= 3

3

Y

Z
 

In total, this yields  

3X  = Av                                                                 (2.20) 

3Y  = 1 2 1 2( X Z -A)- Y Z2 3u v v                                  (2.21) 

3Z = 1 2Z Z3v                                                           (2.22) 

Now to obtain the formula for a point doubling in projective coordinates we apply 

transformation (2.18) to (2.17) as follows: 

Let P = (X1, Y1, Z1) and 2P = (X3, Y3, Z3).  Then  
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3x  

22
1

1 1

11

1

X
3 a

Z X
=  - 2  

ZY
2

Z

æ öæ öç ÷ç ÷ç ÷+ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷ç ÷ç ÷æ öç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

 

( )
22 2 2

1 1 1 1

2 2
1 1

3X aZ 8Y Z
=   

4Y Z

+ -
    

Let w = 2 2
1 13X aZ+ , s = 1 1Y Z , B = 1 1X Z s  , h = w2 – 8B; this yields 

 3x 2 2
1 1

h
= 

4Y Z
 = 3

3

X

Z
 

3y  

2
1

1 31 1

1 3 11

1

X
3 a

Z XX Y
= -  

Z Z ZY
2

Z

æ öæ öç ÷ç ÷ç ÷+ç ÷ç ÷ç ÷ç ÷æ öç ÷è øç ÷ç ÷ç ÷ -ç ÷ç ÷ç ÷æ ö ç ÷ç ÷è øç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

 

 

2
1

1 31 1

1 3 11

1

X
3 a

Z XX Y
= -  

Z Z ZY
2

Z

æ öæ öç ÷ç ÷ç ÷+ç ÷ç ÷ç ÷ç ÷æ öç ÷è øç ÷ç ÷ç ÷ -ç ÷ç ÷ç ÷æ ö ç ÷ç ÷è øç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øç ÷è ø

 

2 2
1 1 1 1

2 2
1 1 11 1

3X aZ X h Y
= -  

2YZ Z Z4Y Z

æ öæ ö+ç ÷ç ÷ç ÷ç ÷-ç ÷ç ÷ç ÷ç ÷è øè ø
 

2 3
1 1 1 1 1

2 2
1 11 1

4X Y Z h 4Y Z
= -  

2YZ Z4Y Z

w æ öæ ö -ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øè ø
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( ) 3
1 1 1 1

3 3
1 1

4X Y s h 4Y Z
= 

8Y Z

w - -
 

( ) 2 2
1

3

B h 4Y s
= 

8s

w - -
= 3

3

Y

Z
 

In total, this yields  

3X  = 2hs                                                                 (2.23) 

3Y  = ( ) 2 2B h 4Y s1w - -                                        (2.24) 

3Z = 38s                                                                  (2.25) 

2.4 Elliptic Curves over Finite Fields 

Calculations over the real numbers are slow and inaccurate due to round-off error. 

Cryptographic applications require fast precise arithmetic.  So we are only 

interested in finite fields Fq.  The formulas stated previously do not change.  But 

instead of using floating-point arithmetic use a large number and do all 

calculations modulo a large prime.  

The key of the implementation of cryptosystem (ECC) is the selection of elliptic 

curve groups over the finite field of Fp and F2m, where p is a prime and m is 

positive integer. By definition, elliptic curve groups are additive groups.  Any 

such field is isomorphic to F[x]/ ( )f x , where f(x) =
m 1

i i p
i 0

, Fm
ix a x a

-

=
+ Îå , is a 

manic irreducible polynomial of degree m over Fp.     
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Three kinds of finite fields Fq are especially suitable for elliptic curve 

cryptosystem (ECC), binary fields F2m, prime fields Fp, and optimal extension 

fields (OEF) Fpm [30].  

2.4.1 Prime Finite fields Fp 

For the finite fields Fq of q elements , where q = pm for some prime p and positive 

integer m =1, there is a finite field Fp, which is called a prime finite field and 

consists of the set of integers modulo p, which are the all possible results of 

reduction modulo p: 

 {0, 1, 2, …., p-1}    

The arithmetic operation on Fp is the usual addition, subtraction and multiplication 

modulo p.  

For elliptic curve E over a finite field Fp, Weierstrass non-homogeneous 

equation (2.8) can be used in which the variable and coefficients all take on values 

in the integers modulo p. For some prime number p ≠ 2,3, Weierstrass non-

homogeneous equation (2.8) can be rewritten as:  

y2 mod p =(x3
 + ax + b) mod p                              (2.26)               

  where (4a3 + 27b2)mod p ≠ 0 , for a, b ∈ Fp. 

Example 2.8  Let p = 23.  Consider elliptic curve E: y2 = x3 - 7x + 2 defined over 

F23.  Note that 4a3 + 27b2 = -1264 (mod 23) ≡ 1 ≠ 0, so E is indeed an elliptic 

curve. 

Indeed E has 26 points - all of them are explicitly shown in Table 2.1. The 

distribution of these points is graphically expressed in Figure 2.3.  
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Table 2.1 Points of E over field F23 

                                                                                                  
 

Figure 2.3 : Doubling point P on E 

 

 

 

 
Figure 2.3  Doubling point P on E 

We choose P (9, 1) is a point of E, because it satisfies the curve equation: 12 = 93 

+ 7(9) + 3 (mod 23).   Let’s add points P + P.  According to definition P + P = 2P 

= - R = (xR, -yR), where λ = (3*92 –7)/2 = 236/2 = 6*12 ≡ 3 (mod 23), xR = 32 – 

2*9 = -9 ≡ 14 (mod 23) and -yR = -1 + 3(9 – 14) = -16 ≡ 7 (mod 23).   Hence 2P 

=-R= (14, 7).  Let’s count also point -R = P + P + P = 2P + P, it means we add 

points 2P = (14,7) and P = (9,1).  Results are λ = (7 – 1)/(14 – 9) = 6*14 ≡ 15 

(mod 23), xR = 152 - 14 - 9 ≡ 18 (mod 23), -yR = -7 + 15(14 – 18) ≡ 2 (mod 23), 

thus 3P = (18, 2).  Equally we can count 4P, 5P, …, 12P = (9, 22), 13P = Ο.  
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Obviously 14P = 13P + P = Ο + P = P, thus we finish the cycle and reach the 

starting point again. 

2.4.2 Binary Finite Field F2m 

The finite field F2m, called a binary finite field, of  m2  elements, can be viewed as 

vector space of dimension m over F2.  That is, there exist a set of m elements 

{ }0 1 0 1, , , , m-α α α αK  in F2m such that, each a∈ F2m can be written uniquely in 

the form: 

m 1

i
i 0

ia α
-

=
å   

 where ia  ∈ {0,1}. 

The elements of F2m should be represented by bit strings of length m.  There 

are several ways of performing arithmetic in F2m.  The specific rules depend on 

how the string of bits is represented. There are two common structures for basis 

representation: polynomial basis representation and normal basis representation [2] 

Polynomial base.  A polynomial base is of the form { }2 11, , , , ,m-α α αK where α  

is a root of an irreducible polynomial f(x) of degree m over F2.  The field is then 

realized as F2[x]/ ( )f x , and the arithmetic is that of polynomials of degree at 

most m-1, modulo f(x), ( )f x  is the cyclic group generated by f(x)[2]. 

 Normal base. A normal base of F2m over F2 has the form { }2 12 21, , , ,
m-

α α αK  

for someα∈ F2m.  It is known that such bases exist for all n ≥1.  Normal bases are 

useful mostly in hardware implementations.  First, the field squaring operation is 
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trivial in normal base representations, as it amounts to just cyclic shifting of the 

binary vector representing the input operand.  

2.4.3 Optimal Extension Fields(OEFs) (2 )n mc±F  

Optimal Extension Fields(OEFs) are class of extension fields Fpm, which exploit 

the optimization of integer arithmetic in modern processors to produce the fastest 

multiplication results over binary and prime fields. 

The OEF is defined as Fpm which satisfies the following: 

• p is a prime less than but close to word size of the processor. 

• p is a pseudo-Mersenne  prime given in the form p = 2n c± , where 

 1
22log c n£   

The elements of Fpm should be represented by a sequence of m words.  All 

arithmetic operations are performed modulo the field polynomial.    

2.5 Counting the number of points  

Elliptic curve cryptosystems generally involve the selection of a suitable elliptic 

curve E and a point P on E called the base point.  To learn more about the 

structure of the group E(F) it is useful to know the exact value of #E(F).  We will 

look at the case when F is Fq, a finite field of q elements.  The following results 

are the best known methods to date for computing #E. 

Theorem 2.9 [Hasse's ] Let N be the number of points on an elliptic curve over 

Fq, a finite field with q elements.  Then  

|N - (q + 1)| ≤ 2 q  
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In another way, Hasse's Theorem gives the estimate #E(Fq) = q+1-t  where |t| ≤ 

2 q [2]. 

Hasse’s theorem enables one to compute #E(Fqk ) from #E(Fq) as follows. 

Let t = q + 1 - #E(Fq). Then 

                                 #E(Fq
k ) = qk + 1 –αk- βk  

where 1 - tT + qT2 = (1 -αT)(1 - βT)[2][16]. 

Schoof 's Algorithm: In 1985, Schoof presented a deterministic algorithm that 

could compute #E(Fq) (its precise value; not a bound or an estimate) in O(log9 q) 

bit operations (where q is some power of p)[2]. This deterministic polynomial 

time algorithm is the fastest to date, and given few alternatives, it is the best 

choice for computing #E.  But in practice, it is awkward and costly to implement, 

particularly when q is large.  

2.6 Discrete Logarithm Problem for Elliptic Curves 

In 1980 Neal Koblitz and Victor Mille independently proposed elliptic curve 

cryptosystems (ECC), based on the difficulty of mathematical problem so-called 

the elliptic curve discrete logarithm problem (ECDLP)[2].  

Indeed the elliptic curve discrete logarithm problem ECDLP is the inverse 

operation of exponentiation in elliptic curve, which can be stated as follows.  Fix 

an elliptic curve.  kP represents the point P added to itself k times.  Suppose Q is a 

multiple of P, so that  

Q = kP 
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for some integer k. Then the elliptic curve discrete logarithm problem is to 

determine k given P and Q. 

 Now we are ready to define the ECDLP as follows:  

Definition 2.7 [Elliptic curve discrete Logarithm Problem-ECDLP] given an 

elliptic curve E defined over finite field Fq , a point P∈ E(Fq)  of order n, and a 

point Q∈ E(Fq), find an integer k, 0≤ k ≤ n-1, for which Q = kP[1] [2]. 

2.6.1 Known Algorithms 

The Phlig–Hellman algorithm reduces the determination of k to the determination 

of k modulo each of the prime factors of n.  Therefore, to achieve the maximum 

possible security level, n should be prime.  To date, the fastest algorithm for 

solving ECDLP is the Pollard ρ−method, as modified by Gallant, Lambert and 

Vanstone, and Wiener and Zuccherato, which takes about πn
2

steps, where each 

step is an elliptic curve addition. In addition, Van Oorschot and Wiener showed 

how the Pollard ρ−method can be parallelized so that if r processors are used, the 

expected number of steps by each processor before a single discrete logarithm is 

obtained is πn
2

[1][2].  For elliptic curves E defined over a subfield F2k of F2m, 

the parallelized Pollard ρ−method for ECDLP in E(F2m ) can be sped up to an 

expected running time of πnk/m
2r

.  Therefore the fastest known algorithm that 

solves ECDLP in general is the Pollard ρ−method which it runs in full exponential 

time.  Since the index calculus methods can compute discrete logarithm problem 
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(DLP) in the multiplicative group of a finite field (Fq) in sub-exponential time, 

they cannot be applied to the case of discrete logarithms over elliptic curves[1][2]. 

2.6.2 Weak Curves 

There are certain types of elliptic curves in which a successful attack could take 

place in sub-exponential time.  These curves can easily be tested for and avoided. 

Such curves are called the supersingular curves and anomalous curves. 

Supersingular curves are a special class of elliptic curves on which the elliptic 

curve logarithm can be reduced to the case of discrete logarithms in a 

multiplicative group (DLP).  When combined with sub-exponential algorithms for 

solving the classical DLP, this yields a probabilistic subexponential running time 

for computing elliptic curve logarithms on supersingular curves.  This was a 

finding due to Menezes, Okamoto and Vanstone (MOV) in 1991, in which they 

showed how the ECDLP could be reduced to classical DLP in an extension of a 

multiplicative group Fq[1][2][9]. 

The other class of curves, the anomalous curves, allows an even more efficient 

attack when applicable.  Proposed independently in 1998 by Satoh and Araki, 

Semaev, and the following year by Smart, this type of curves allow the ECDLP to 

be solved in polynomial time by reducing it to the classical DLP in an additive 

group Fq [1][2][9].  

2.7 Optimizing ECC Implementations 

To get efficient elliptic curve cryptosystem, some important issues must be 

addressed before implementing that affect the efficiency of the computations.  

These include selection of elliptic curve domain parameters (underlying finite 
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field, field representation, and elliptic curve), selecting suitable coordinate 

systems, and choosing efficient algorithms for exponentiation which is the most 

elliptic curve operation.   

2.7.1 Domain Parameters 

When setting up an elliptic curve cryptosystem, there are three basic decisions 

that need to be made: 

1. Selection of the underlying finite field Fq. 

2. Selection of the representation for the elements of Fq. 

3. Selection of the elliptic curve E over Fq. 

2.7.1.1   Selection of the Underlying Finite Field Fq 

The field operations of modular addition and subtraction are relatively fast and 

easily implemented.  However, modular multiplication (which requires a modular 

reduction) and modular inversion are much more time consuming.  The following 

remarks discuss how the choices of the underlying field, and its representation. 

1. Three kinds of finite fields Fq are especially suitable for elliptic curve 

cryptosystem (ECC), binary fields F2m, prime fields Fp, and optimal extension 

fields (OEF) Fpm.  

2. The arithmetic operation on Fp is the usual addition, subtraction and 

multiplication modulo p. However using standard modular arithmetic is not very 

efficient since multi-precision remaindering operations are very expensive.  Hence 

when used in elliptic curve systems there are various choices that are often made: 

General Primes For general primes the most efficient implementation technique 

is almost always to use Montgomery Arithmetic.  Montgomery arithmetic uses a 
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special representation to perform efficient arithmetic, the division and 

remaindering essentially being performed by bit shifting.  

Generalized Mersenne Primes Certain primes are highly suited for efficient 

reduction techniques, the most simple form of such primes being the Mersenne 

primes, which are primes of the form p = 2k -1.  However the number of Mersenne 

primes of the correct size for cryptography is limited[30].  

3. Looking at F2m as a vector space of dimension m over F2, the elements of F2m 

can be represented as binary vectors (or strings) of length m, given a suitable basis 

of this vector space.  This makes it easy to store data in hardware (ideally in shift 

registers of length r).  Addition in F2m can be performed in one clock cycle by 

bitwise XOR-ing the operands. 

4. In software environments in which an arithmetic processor is already available 

for modular exponentiation, the performance of Fp can be improved so that in 

some cases it exceeds the performance of F2m.  This holds true for platforms such 

as those using Pentium processors or, in the case of smart cards, those having a 

crypto coprocessor to accelerate modular arithmetic. 

5. If the field F2m is selected as the underlying finite field, then there are many 

ways in which the elements of F2m can be represented. The two most efficient 

ways are an optimal normal basis representation and a polynomial basis 

representation.  

6. When using a normal basis representation for the elements of F2m, squaring a 

field element becomes a simple cyclic shift of the vector representation, and thus 

the multiplication count in adding two points is reduced. 
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2.7.1.2  Selection of an Suitable Elliptic Curve 

To obtain secure ECC, elliptic curve E defined over a finite field Fq must satisfy 

the following conditions: 

1. To resist the Pollard ρ-attack mentioned, #E(Fq) should be divisible by a 

sufficiently large prime n (for example, n > 2160). 

2. To resist the Semaev–Smart–Satoh–Araki attack, #E(Fq) should not be equal to 

q. 

3.  To resist the MOV reduction attack, n should not divide qk-1 for all 1 ≤  k≤  C, 

where C is large enough so that it is computationally infeasible to find discrete 

logarithms in F*
qc.  

Indeed, there are four techniques for selecting an appropriate elliptic curve[2]. 

1) Using Hasse’s Theorem.  This technique can be used for picking curves over 

F2m where m is divisible by a small integer l ≥  1.  

To select an appropriate curve over F2m, we first pick an elliptic curve over a 

small field F2
l, where l divides m, compute #E(F2

l) exhaustively, and then use 

Hasse’s theorem to determine #E(F2m).  If conditions (1), (2) and (3) above (with 

q = 2m) are not satisfied, then another curve is selected and the process is repeated.  

2) The Global Method.  Another possibility is to choose an elliptic curve defined 

over a number field and then reduce it modulo a prime ideal such that the 

resulting curve over a finite field satisfies conditions (1), (2) and (3).  

3) Multiplication Method.  The method of complex multiplication (CM) allows 

the choice of an elliptic curve order before the curve is explicitly constructed. 
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Thus, orders can be generated and tested to satisfy conditions (1), (2) and (3); a 

curve is constructed only when these conditions are met.  

4) Choosing a Curve at Random.  Another approach to selecting an appropriate 

elliptic curve E over Fq is to select random parameters a, b ∈  Fq such that (4a3 + 

27b2) ≠ 0.   One then computes u = #E(Fq) and factors u. This process is repeated 

until conditions (1), (2) and (3) are satisfied. 

2.7.2 Coordinate Systems 

One of the crucial decisions when implementing an efficient elliptic curve 

cryptosystem is deciding which point coordinate system to use.  The point 

coordinate system used for addition and doubling of points on the elliptic curve 

determines the efficiency of these routines, and hence the efficiency 

exponentiation.  

Affine coordinates are the simplest to understand and are used for 

communication between two parties because they require the lowest bandwidth.  

The drawback of affine coordinates is, that the required field inversion is very 

costly compared to multiplications and squarings.  So, alternative coordinate 

systems such as Projective coordinates can be used to avoid inversions.  

Table 2.2 shows the computational complexity of point addition and doublings 

in two coordinate systems on the elliptic curve over Fp , where M, S and I denote 

field multiplication, squaring and inversion respectively, and the cost of field 

additions and subtractions are ignored. 
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Addition Doubling Coordinate 

M S I M S I 

Affine 2 1 1 2 2 1 

Projective  12 2 0 7 3 0 

Table 2.2  The computational complexity of affine and projective coordinate systems. 

 
Cohen et al. [7] recommended the idea of mixed coordinates, where the inputs 

and outputs to point additions and doublings may be in different coordinates.  

2.7.3 Exponentiation  

Elliptic curve exponentiation can be computed by repeating additions and 

doublings, where the average number of addition of elliptic points operations 

depends on the minimal hamming weight of the exponent. The minimal hamming 

weight representation of exponent can be obtained by using windowing method,  

and mixed with the addition-subtraction method for reducing the number of 

additions [10][20].  
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CHAPTER 3 

3 Elliptic Curve Exponentiation   

Elliptic curve exponentiation is the operation of computing kP for a given point P 

on an elliptic curve and integer k. It is the primary operation in elliptic curve 

cryptosystem such as ECDH, which is denoted by 

 Q = kP

 
where Q, P are points on an elliptic curve and k is an integer; the cost of executing 

such cryptosystems depends mostly on the complexity of exponentiation.  Thus, 

the performance and execution time of such elliptic curve cryptosystems is 

primarily determined by using efficient algorithms for exponentiation.  

One approach to speed up the elliptic curve exponentiation kP, P ∈ E(Fq) is by 

reducing of the number of additions.  It is possible to reduce the number of 

additions by recoding the integer k into a representation having minimal number 

of nonzero digits [10].  

Next section presents how to represent integer k with minimal number of 

nonzero digits. 

3.1 Base-2 Representations of Integers 

The involved exponent of elliptic curve exponentiation operation is positive 

integer.  There are several ways to represent an integer rather than well known 

decimal representation. One of these representations is so-called base-2 

representations where the integer is represented by the sum of multiple powers of 
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two.  In base-2 representations digits other 0 and 1 are permitted.  The set of digits 

is called digit set and denoted by D [12]. 

 Definition 3.1 The sequence t-1 0(k , . . . , k )  is called a D-representation of the 

integer k, if   

 k =
t

i
i

i=0

k .2∑   and  Dik  , i = 0, . . . , t - 1.∈ ∀                            (3.1) 

where D is called the digit set  and the number of elements in the digit set, i.e. its 

order is denoted by |D| [12]. 

If D = {0, 1} holds, then we give the simplest base-2 representation which is 

the uniquely determined binary representation. The length of this representation, 

the so-called bit length t is calculated as t = 2log  k +1          .  The ki are called bits, 

which is short for binary digits.  If D = {0, ±1} holds, the representation is also 

called a signed binary representation.  More general, If D = {0,±1, . . . ,±x} holds, 

the representation is also called a signed representation. For example the sequence 

(1, 0, 1, 0, 1, 1, 0) is binary representation of 86 with bit length 6, since 

86 = 1* 26 + 0* 25 + 1* 24 + 0* 23 + 1* 22 + 1* 21 + 0* 20 

In general, D-representations loose the property of uniqueness.  For example 

(1, 0, 1, 1, 1, 1 )  and (1, 1, 0,1 , 0, 1)  are both signed binary representations of 45 

with bit length 6, where 1  = -1. 

It is necessary to measure the quality of representations.  This can be done by 

using the weight of either one D-representation separately or several D-

representations at once.  
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Definition 3.2 Let k = t-1 0(k , . . . , k ) be a D-representation with bit length t. The 

Hamming weight of k is the number of non-zero digits in k and denoted by Hw(k). 

The Hamming density of k is given as Hd(k) = Hw(k)/n.  The average Hamming 

density of a class of D-representations χ is the expected Hamming density of a 

randomly chosen D-representation in χ with bit length n→ ∞  and denoted by 

AHd(χ). 

3.1.1 Signed Binary Representation  

Signed binary representation is redundant binary representation.  It does not 

exhibit a unique minimal form.  Algorithms to generate a minimal representation 

are widely reported for exponentiation, and multiplication [12].  

In 1951 Booth presented an algorithm to multiply two numbers by converts a 

2’s complement binary number to a signed binary digit set D = {0, ±1}.  Booth 

algorithm scans the bits from right to left, and replaces a consecutive block of   

several 1's by a block of 0's and 1  according to 
{ {
a a 1

1...1 1,0...0 ,1

−−−−

            
→→→→                        

            

[30]. 

Example 3.3 Let k = 221 with binary representation (1, 1, 0, 1, 1, 1, 0, 1) then 

Booth algorithm convert this binary representation to (1 , 0,  1,  1,  0,  0, 1,  1, 1) . 

However, Booth recoding has a challenging, if two blocks of 1's are separated 

by an isolated 0, the Booth algorithm does not use the fact that (((( )))) (((( ))))1,1 0,1≡≡≡≡ .  For 

example, { {1...1,0,1...1

a b

    
    
    
    

 is replaced by 
{ {1,0...0 ,1 ,1,0...0 ,1

a 1 b 1

    
    
    

− −− −− −− −    

and not by { {1,0...0 ,1 ,0...0 ,1

a b 1

    
    
    

−−−−    
. 

Therefore Booth recoding output is not sparse, and the Hw of exponent k of large 

t bits, is (t +1)/2 on average which is not minimal [5].  
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Later, in 1960, through his investigations on how to reduce the number of 

additions and subtractions used in binary multiplication and division, Reitwiesner 

presented a method to convert an exponent k from binary to its canonical form of 

signed binary representation so-called NAF[10][13].   

Definition 3.4 A signed binary representation is said to be non-adjacent form 

(NAF), if no two adjacent digits are nonzero. 

Reitwiesner scans the bits from right to left, and replaces a consecutive block of 

several 1's by a block of 0's and 1 according to 
{ {
a a 1

1...1 1,0...0 ,1

−−−−

            
→→→→                        

            

, If two 

blocks of 1's are separated by an isolated 0, the Reitwiesner algorithm uses the 

fact that (((( )))) (((( ))))1,1 0,1≡≡≡≡ .  For example, { {1...1,0,1...1

a b

    
    
    
    

 is replaced by { {1,0...0 ,1 ,0...0 ,1

a b 1

    
    
    

−−−−    
 

and not by 
{ {1,0...0 ,1 ,1,0...0 ,1

a 1 b 1

    
    
    

− −− −− −− −    

.  So Reitwiesner's algorithm is also known as Booth 

canonical recoding algorithm [8].  

Example 3.5 Let k = 221 with binary representation (1, 1, 0, 1, 1, 1, 0, 1) The 

NAF of k is generated as follows 

   1    1    0   1    1    1    0   1 

                  1    0   1  
        1    1    0  
    1   0  1  
1   0   
_____________________

1   0    0   1   0    0   1   0   1
 

 

Hence, the NAF of 221 is given as (1 , 0 ,  0, 1,  0,  0, 1, 0,  1) . 
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Algorithm 3.1 (Reitwiesner algorithm), shows how to generate non-adjacent 

form (NAF) of exponent k from binary form of k.  

Algorithm 3.1   Generation of NAF     [13] 

    INPUT:  An t-bit exponent k in its binary representation t 1 t 0( k ,k ,...,k )−−−−  

 OUTPUT: The NAF of t 1 t 0( , ,..., ) of  kµ µ µ−−−−  

1. c 0;k 0;k 00 t 1 t← ← ←← ← ←← ← ←← ← ←++++  

2. for i from 0 to t do 

    2.1   c ( c k k ) / 2i 1 i i i 1← + +← + +← + +← + +    + ++ ++ ++ +                

     2.2  i i i i 1c k 2cµ ++++← + −← + −← + −← + −  

3. return The NAF t 1 t 0( , ,..., ) of  kµ µ µ−−−−  

 

Reitwiesner's proved the NAF propriety of his output, and this representation 

is unique and has minimal Hw [13]. Morain and Olives [20] showed that on 

average the minimal Hw of exponent t-digits k in binary signed representation is 

equal to 
(t + 1)

3
. 

3.2 Algorithms for Elliptic Curve Exponentiation  

 Since elliptic curve exponentiation kP, where k is a positive integer and P a given 

point on elliptic curve is defined as  

k times

kP = P + . . . + P   1 4 2 4 3   

 For large integer k, computing exponentiation kP for a given point P on an elliptic 

curve is costly endeavor, and it is inefficient to use straightforward summation 

technique that requires (k-1) elliptic additions, so other techniques should be used 

to efficiently compute exponentiation.   
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3.2.1 Binary Methods 

Binary methods are the standard algorithms for the efficient computation of an 

exponentiation.  These algorithms use the binary representation of the exponent. 

There are two different binary methods, one that scans the bits of the exponent 

from right-to-left and other from left-to-right.  A doubling is performed at each 

step, but performing addition depends on the scanned bit value, so it called double 

and add algorithms.  

3.2.1.1 Right-to-Left Binary Method  

Let P a point in elliptic curve, and t-bit exponent k in its binary representation.  It 

possible to compute  

  kP = t -1 t -2
t-1 t-2 1 0(k 2  + k 2  + ...+ k 2 + k ) P                      

       = t -1 t -2
t-1 t-2 1 0k 2 P + k 2 P + ...+ k 2 P+ k P                                    

Algorithm 3.2 is adapted from [13] to present right-to-left binary method.  

Algorithm 3.2  Right-To-Left Binary Method       [13] 

INPUT : an element P ∈ E(Fq ), t-bit exponent k in its binary representation.  

OUTPUT : kP 

1. X ←Ο  (where Ο  is infinity ) 

2. Q P←  

3. For i  from  0 to t-1  do the following 

      3.1  if ki = 1  then  X← ECADD(X, Q)  

      3.2  Q←ECDBL(Q) 

4.  return (X) 

 
Algorithm 3.2 computes the exponentiation kP starting at the least significant 

bit k0, and performs an ECADD operation each time the current bit ki is 1, hence 

  (3.2)      
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with probability 1/2.  An ECDBL operation is performed in each iteration. 

Therefore the right-to-left binary method on average requires 

1
2 t ECDBL + t · ECADD   operations.   

Example 3.6 Let the exponent k = 18 with binary representation (1, 0, 0, 1, 0). 

The following table displays the values of X, Q, ki during each iteration of 

algorithm 6 for computing 18P. 

i 0 1 2 3 4 Finally 

ki 0 1 0 0 1 - 

Q P 2P 4P 8P 16P 32P 

X Ο 2P 2P 2P 18P 18P 

Table 3.1   The values of X, Q during the iterations of right-to-left binary method 

 

Right-to-left binary method can be generalized to work with D-

representations.  Algorithm 3.3 is adapted from [18] shows the general right-to-

left binary method. 

Algorithm 3.3  General Right-To-left Binary Method  [18] 

INPUT : an element P ∈ E(Fq ), and  t-digits exponent k  in D-representation 

OUTPUT : kP 

1. X ←Ο   

2. Qd ← dP , *d D∀ ∈     
3. For i  from  0 to t-1  do the following 

            3.1  if ki ≠ 0  then  X← ECADD(X, 
ik

Q )  

      3.2 Qd← ECDBL(Qd) , d ( D {0 })∀ ∈ −  

4.  return (X) 

We noticed Algorithm 3.3 precompute all points in the form dP, d ∈ D-{0,1} 

then performs an ECADD operation each time the current digit ei is non-zero, 
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hence with probability AHd(χ).  Since the point d·2iP, d ∈ D has to be added in 

the i-th iteration, all the |D|-1 points have to be doubled in each iteration.  On 

average, the general right-to-left binary method requires 

t(|D|-1) ECDBL + t · AHd( )ECADDc   

operations to compute a exponentiation kP.  Also in this case, additional ECADD 

and ECDBL operations are required for the precomputation. 

3.2.1.2 Left-to-Right Binary Method 

The basic idea of the left-to-right binary method is to successively factor out 2 in 

(3.2), which yields  

t -1 t -2
t-1 t-2 1 0

t -2 t -3
t-1 t-2 1 0

t-1 t-2

kP=k 2 P + k 2 P + ...+ k 2 P+ k P

    =2(k 2 P + k 2 P + ...+ k  P)+ k P
                                                                  
    =2(2( 2(k 2 P + k P )+ ...)+ 

M
K 1 0

t-1 t-2 1 0

k  P)+ k P
    =2(2( 2(2(k P )+ k P )+ ...)+ k  P)+ k PK

                  (3.3) 

Now it is possible to start the evaluation at the most significant bit kt-1, i.e. 

left-to-right.   In the i-th iteration, the intermediate result Q is doubled and if the 

current bit ki is 1, P is added as shown in Algorithm 3.4. 

Algorithm 3.4  Left-To-Right Binary Method  [13][18] 

INPUT : an element P ∈ E(Fq ), t-bit exponent k in its binary representation. 

OUTPUT : kP 

1. Q← Ο   

2. For i  from  t-1 down 0 do the following 

2.1 Q ←ECDBL(Q) 
   2.2  if ki = 1  then Q←ECADD(Q,P) 

3. return (Q) 
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Algorithm 3.4 performs an ECADD operation each time the current bit ki is 1, 

hence with probability 1/2.  An ECDBL operation is performed in each iteration. 

Therefore, to compute exponentiation, the left-to-right binary method on average 

requires 

1
2 t ECDBL + t · ECADD   operations.   

Example 3.7 Let the exponent k = 18 with binary representation (1, 0, 0, 1, 0). 

Table 3.2 displays the values of Q, ki during each iteration of algorithm 3.4 for 

computing 18P. 

i 4 3 2 1 0 

ki 1 0 0 1 0 

ECDBL Ο 2P 4P 8P 18P 

ECADD P - - 9P - 

Q P 2P 4P 9P 18P 

Table 3.2  The value of Q during the iterations of left-right binary method 

 
Left-to-right binary can also be generalized to work with D-representations as 

Algorithm 3.5 which is adapted from[18][23]. 

Algorithm 3.5  General Left-To-Right Binary Method   [18][23] 

INPUT : an element P ∈ E(Fq ), and  t-digits exponent k  in D-representation 

OUTPUT : kP 

1. Q← Ο  (where Ο  is infinity ) 

2. Qd←dP , *d D∀ ∈      

3. For i  from  t-1 to 0   do the following 

     3.1 Q←ECDBL(Q),  

        3.2  if ki ≠ 0  then  Q ←ECADD(Q, 
ik

Q ) 
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   4.  return (Q) 
 

We noticed that algorithm 3.5 precompute all points in the form dP, d ∈ D-{0, 

1}, then performs an ECADD operation each time the current digit ki is non-zero, 

hence with probability AHd(χ).  Also, one ECDBL operation is performed in each 

iteration to double the intermediate result.  On average, the general left-to-right 

binary method requires  

  t ECDBL + t · ECADDAHd(X)    

operations to compute a exponentiation kP.  Also in this case, additional ECADD 

and ECDBL operations are required for the precomputation. 

3.2.1.3 Why Left-to-Right 

From Algorithms (3.2, 3.4), we noticed that both methods require the same 

amount of ECADD and ECDBL operations, but right-to-left binary method 

requires one additional register X to store i2 P . 

In the case of the general methods: 

 1) The left-to-right binary method requires only one ECDBL operation in each 

iteration, while the right-to-left binary method requires one ECDBL operation for 

each precomputed point in each iteration.  This means, that the right-to-left binary 

method requires (|D|-1) times more ECDBL operations than its left-to-right 

counterpart.  

2) The precomputed points for the ECADD step in left-to-right remain fixed 

during the whole runtime.  So it is possible to use mixed coordinates as in [7] for 

the ECADD step.  We can conclude that left-to-right algorithms are preferable. 
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3.2.1.4 Exponentiation with Precomputation 

If there is extra memory, then it is possible to use general binary algorithms.  As it 

turned out, the precomputation of several points is required by both algorithms, 

depending on the D-representation used for the exponent, so additional ECADD 

and ECDBL operations are required for the precomputation stage.  

In general binary methods, and D-representation used for the exponent, the 

number of points to precompute equal (|D| - 1), because the points dP is computed 

for all d *D∈ .     

As explained in Section 2.2 inversions of points on an elliptic curve can be 

computed virtually for free just by changing the sign of the y-coordinate.  When 

the signed representations of the exponent used, the number of points to 

precompute can be reduced by more than 50%, because the points d P  is 

computed only for d ∈ digit-set D and stored in the precomputation stage.   

Next sections present three general left-to-right methods with signed 

representation of exponent.  

3.2.2 Sliding Window applied on NAF     

Sliding window method is an approach for computing exponentiation with 

prcomputations.  It generalizes binary method and is parameterized by a positive 

integer w, where the case w = 1 is the same as binary method.  Sliding window 

method can recode the binary representation of the exponent by such windows 

yields a D-representation of exponent.  In sliding window method there is no 

reasons to force the windows to be the next to each other, fewer windows of width 
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up to w can suffice to cover all non-zero exponent bits if strings of zeros are 

skipped, Moreover, one can arrange for all windows to be odd-valued (i.e., have a 

1 as the rightmost bit).  Then the bits covered by each single window correspond 

to a value in the digit-set D = {1, 3,..., 2w - 1}. 

It is possible to scan the binary representation of the exponent from left to 

right, or from right to left, starting a new window whenever a non-zero bit is 

encountered, choosing the maximum width up to w for this particular window 

such that the rightmost bit is also non-zero. 

Example 3.8  Let k = 221 with binary representation (1, 1, 0, 1, 1, 1, 0, 1).  Then 

left-to-right scanning with window width w =3, can convert d as follows 

 1    1    0   1    1    1    0   1    

      3    0   0   0   7    0   1    

 

Hence, yields a representation of k = 221 is given as 0   3    0   0   0   7    0   1 . 

 Such left-to-right scanning or right-to-left scanning yields a representation  

 
it

ii 0k k 2== ∑ ,   ik D∈    

 and the average density of nonzero digits of both representations is equal to  

1

w 1++++
 [18].  

Koyama and Tsuruoka [14] suggested the application of a sliding window 

scheme on binary signed-digit representation as NAF to obtain a signed recoding 

with smaller Hamming weight. De Win et al.[33] applied the sliding window 

method directly on NAF giving smaller digit set D ={0,±1,±3, . . . ,±dmax}, where 

dmax is the largest odd NAF consisting of at most w digit equals w 11
3
( 2 1)++++ −−−−  for 
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odd w, and w 11
3
( 2 1) 2++++ + −+ −+ −+ −  for even w.  Algorithm 3.6 describes the sliding 

window applied on NAF as stated in [33]. 

  Algorithm 3.6  Sliding Window applied on NAF    [33] 

INPUT:  an element P ∈ E(Fq), NAF ( , ,..., )t 1 t 0µ µ µ−−−−  of k ,  window  width w ≥ 1. 

OUTPUT: kP 

precomputation stage: 

1. P1 P, P2  ECDBL(P) 

2. For j from 1 to 
w w 1( 2 ( 1) )

1
3

+++++ −+ −+ −+ −
−−−− do 

            P2i+1  ECADD(P2i-1 , P2)  

Evaluation  stage  

3. Q Ο 

4. i t-1 

5. while i ≥ 0 

5.1 If iµ  = 0 then  

                 5.1.1 Q  ECDBL(Q) 

5.1.2 i  I -1 

5.2  else 

               5.2.1  s  max(i - w + 1, 0) 

               Let l be the smallest integer such that l ≥ s and lµ ≠ 0 

   5.2.2  for n from 1 to i-l+1  do  Q  ECDBL(Q) 

  5.2.3  if ( , ,..., )i i 1 lµ µ µ−−−−  > 0 then  Q  ECADD(Q , P ( , ,..., )i i 1 lµ µ µ−−−−  ) 

  5.2.4 else if ( , ,..., )i i 1 lµ µ µ−−−− < 0 then  Q  ECADD(Q ,- P ( , ,..., )i i 1 lµ µ µ−−−− ) 

 

  5.2.5 for n from 1 to l-s do  

         Q  ECDBL(Q) 

  5.2.6  i  s -1 
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6. Return Q 

3.2.3 The width-w Non Adjacent Form (wNAF) 
 
Blake, Seroussi and Smart and Solinas, proposed independently wNAF that is 

computed directly from binary strings using a generalization of NAF recoding for 

w>2. [18]   

Definition 3.9 (wNAF) A sequences of signed digits is called wNAF iff the 

following three properties hold: 

   (1)  The most significant non-zero bit is positive. 

   (2)  Among any w consecutive digits, at most one is non-zero. 

   (3) Each non-zero digit is odd and less than 2
w-1
 in absolute value. 

If w=2, 2NAF can simply call NAF [18].  

3.2.3.1 Generation of wNAF 

Algorithm 3.7 describes the generation of the wNAF from the decimal 

representation as stated [18].  

INPUT: width w, an t-bit integer k in its decimal representation. 

OUTPUT:  The  wNAF  ( , ,... )t t 1 0δ δ δ−−−−  of  k 

1. i← 0 

2. while k ≥ 1 do 

 if k is even then 

     0iδ ====  

 else 

  wmods 2iδ ←←←←   ;  ik k k← −← −← −← −  

  k= k /2 ; i← i+1  

Algorithm 3.7   Generation of wNAF [18] 
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3. return  ( , ,... )t t 1 0δ δ δ−−−−  

 

Algorithm 3.7 generates a wNAF of exponent k from least significant bit that 

is right-to-left generation, such that at most one of any w consecutive digits is 

non-zero.  This algorithm uses the signed modulo operation such that k is odd 

each time a signed modulo operation is performed. For example, the 

representation:  

k = (1,1,1,1,0,0,1,0,1,1,0,0,1,0,1)                                     (3.4) 

with window size w = 3,  is converted to 3 NAF representation: 

k = (1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 3 )                         (3.5) 

wNAF have an average density of nonzero digits of 1/(w + 1) for t → ∞, and the 

signed-digit set D = {0,±1,±3, . . . ,±(2w-1 - 1)} where t is the bit-length of the 

binary form of exponent k [18].  In [22], Muir and Stinson proved that the Hw of a 

exponent given in its wNAF is minimal for any choice of w.  This implies that the 

AHd of the wNAF is minimal amongst all D-representations.  Therefore wNAF 

are optimal in the terms of time and memory for w > 3. Muir and Stinson [22] also 

proved the following these properties of the wNAF   

  (1)  wNAF representation is unique except for the number of leading zeros 

  (2)  Every integer can represented as wNAF.  

  (3)  An integer’s w-NAF is at most one digit longer than its binary representation. 

3.2.3.2 Exponentiation with wNAF    

Algorithm 3.8 is adapted from [26] describes the exponentiation with wNAF   

Algorithm 3.8  Exponentiation with wNAF   [26] 
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INPUT:  an element P ∈ E(Fq), wNAF ( , ,... )t t 1 0δ δ δ−−−−  of k ,  window size w ≥ 2. 

OUTPUT: kP 

precomputation stage 

1. P1 P 

2. P2  ECDBL(P) 

3. For i from 1 to 2w -2 -1 do 

           P2i+1  ECADD(P2i-1 , P2)  

 Evaluation  stage  

4. Q Ο 

5. For i from t down  to 0 do 

 5.1  Q  ECDBL(Q) 

5.2  if iδ > 0 then  Q  ECADD(Q , P iδ ) 

5.3 else if iδ < 0 then  Q   ECADD(Q ,- P iδ ) 

       6. Return Q 

 

Although there are slightly more point operations needed to evaluate the 

exponentiation if the exponent is represented in wNAF compared to the [33] 

representation, the required precomputation is less in the wNAF case because of 

the smaller digit set. Blake et al. proved that wNAF is asymptotically better than 

sliding window on NAF schemes if w > 3 [27].   

3.2.4 The width-w Mutual opposite Form (wMOF) 

As we pointed out in subsection 3.2.1 that left-to-right exponentiation algorithms 

is preferable, But all algorithms for generating wNAF, need carry-overs due to the 

recoding is restricted to be done right-to-left due to additional memory O(n) to 

store the recoded string before starting the left-to-right evaluation of the 

exponentiation.  Hence it is an important task to recoding the exponent from left 

to right, this enables the recoding, and evaluation stage in general left-right binary 



 55

method to be merged without storing the recoded exponent, this reduce memory 

space [27]. 

Joye and Yen [13] proposed a left-to-right binary recoding algorithm, but it 

has been an unsolved problem to generate a left-to-right recoding for w> 2.  

wMOF is the first left-to-right signed recoding scheme for w > 2 that is 

constructed by applying left-to-right sliding window method on Mutual opposite 

form (MOF), and it is efficient as wNAF [27]. 

3.2.4.1 The Mutual opposite Form (MOF) 

Okeya et al [27] defined a new canonical binary signed-digit representation called 

the mutual opposite form (MOF).  MOF is equal Booth recoding but can compute 

in any order.  

 Definition 3.10  The n-bit mutual opposite form (MOF) is an n-bit signed binary 

string that satisfies the following properties: 

1. The signs of adjacent non-zero bits (without considering zero bits) are 

opposite. 

2. The most non-zero bit and the least non-zero bit are 1 and, 1 respectively, 

unless all bits are zero. 

For example the representation 01 0011 010001 0100 , is of MOF. It has zero bits 

inserted between non-zero bits that have a mutual opposite sign. 

 

by (t +1)-bit MOF, and the average non-zero density of t-bit MOF is 1/2 for 

t→ ∞. They proved also that the operation µ  = 2k  k converts binary string k to 
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its MOF, where ‘’stands for a bitwise subtraction.  Algorithm 3.9 shows how 

MOF is computed. 

3.2.4.2 Generation of The width-w Mutual opposite Form (wMOF) 

In order to apply left-to-right sliding window method on MOF, Okeya and Takagi 

[27] defined the conversions for MOF windows of length l = 2, 3, . . ., w, such that 

the first and the last bit is non-zero.  If l < w holds, the window is filled with 

closing zeros instead of leading ones.  These conversions lead to generate 

complete conversion table, for example, the look-up table width 4 is as following: 

01000011   10001000} →→   0030
0110

1011
→



    0005

1111

0111
→





   0007

1110

1100
→



  

 

00101001   0001000}1 →→   
0300

0101

0111
→



    5000

1111

1101
→





  7000

1011

0011
→





  

In general when the look-up table width w is used, then the signed-digit set D 

= {0,±1,±3, . . . ,±(2w-1 - 1)} which is minimal as wNAF.  Therefore, the scheme 

Algorithm 3.9   Generation  MOF from Binary [27] 

 INPUT:  An t-bit exponente in its binary representation ( k ,k ,...,k )t 1 t 0−−−−  

 OUTPUT: MOF of ( , ,..., ) of  kt 1 t 0µ µ µ−−−−  

1. 
i i 1kµ

−−−−←−←−←−←−  

2. for i from t-1 down  to 1 do 

 i 1 ii k kµ
−−−−← −← −← −← −  

3. 0i kµ ←−←−←−←−  

4. 
return  The MOF ( , ,..., ) t 1 t 0µ µ µ−−−−  of k
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requires only 2w-2 precomputed elements.  Now we give the definition of wMOF 

as in [27]. 

Definition 3.11  A sequence of signed digits is called wMOF iff the following 

three properties hold: 

1. The most significant non-zero bit is positive. 

2. All but the least significant non-zero digit x are adjoint by w-1 zeros as 

follows: 

– in case of 2s-1 < |x| < 2s for an integer 2 ≤ s ≤ w - 1 the pattern 

– equals    { {
s w s 1

0 0 x 0 0

− −
L L  

–  in case of |x| = 1, either the pattern equals 321
w-1

0 . . . 0 x  and the next lower 

non-zero digit has opposite sign from x  or  the pattern equals 321
2-w

0 . . . 0 0x  

and the next lower non-zero digit has the same sign as x. 

If x is the least significant non-zero digit, it is possible that the number of right-

hand adjacent zeros is smaller than stated above.  In addition, it is not possible 

that the last non-zero digit is a 1 following any non-zero digit.  

3. Each non-zero digit is odd and less than 2
w-1 
in absolute value. 

The following algorithm is proposed by [27] to generate wMOF.      

       

Algorithm 3.10   Generation wMOF from MOF [27] 

   INPUT:   width w, t-bit exponent k in its MOF ( k ,k ,...,k ) t 1 t 0−−−−  

  OUTPUT : wMOF of k = ( , ,... )t t 1 0δ δ δ−−−−   

1. k-1 ← 0 ; i← t  

2. While i ≥ w - 1 do 
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       if ki = ki-1 then 

           2.1.1 ki ← 0 ; i← i-1  

      else {The MOF window begins with a non-zero digit left hand} 

             2.2.1 ( , ,... )i i 1 i w 1δ δ δ− − +− − +− − +− − +  ←Table wSW (ki-1 - ki, ki-2 - ki-1, . . . , ki-w – ki-w+1) 

            2.2.2  i← i-w  

3.     if i ≥ 0 then  

           3.1 ( , ,... )i i 1 0δ δ δ−−−−  ← Table i+1SW(ki-1 - ki, ki-2 - ki-1, . . . , k0 - k1,-k0) 

4. return ( , ,... )t t 1 0δ δ δ−−−− . 

 
Algorithm 3.10 generates a wMOF of exponent from most significant bit by 

applying sliding window left-to-right and using the conversion table, for example, 

exponent k = 619  has binary the representation  

k = (1,0,0,1,1,0,1,1,1,1)                                                     (3.6) 

with window size w = 3,  is converted to 3 MOF representation: 

k = (0, 1, 0, 0, 0, 3, 0, 0, 3, 0, 1 )                                            (3.7) 

Okeya and Takagi [27] proved that every non-negative integer k has a 

representation as wMOF, which is unique except for the number of leading zeros  

Theorem 3.12 For t→∞, the average non-zero density of wMOF is asymptotically 

1/(w+1)  [27].  

Proof   The AHd is the average density of non-zero digits of a randomly chosen 

wMOF with bit length t →∞. This density is given as the average number of non-

zero digits divided by the average number of digits written out by algorithm 3.10 

Two cases exist: 

ki = 0 : In this case only one digit is written out, which is zero. 

ki ≠ 0: In this case w digits are written out, one non-zero and w - 1 zero. 
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Since AHd(MOF) = 1/2, both cases appear each with a probability of 1/2. 

Therefore, the AHd of the wMOF is given as  

                       AHd(wMOF) =      
1 1
2 2
1 1
2 2

.0 .1 1

1.1 .

++++
====

++++++++ ww
                                              

Avanzi [3] proved that the Hw of a exponent given in its wMOF is minimal 

for any choice of w.  This implies, that the AHd of the wMOF is minimal amongst 

all D-representations which use the digit set D = {0,±1,±3, . . . ,±2w-1 - 1}.   

Finally, we compare the characterizing properties for wMOF and previous two 

schemes sliding window applied on NAF, and wNAF.  These properties are size 

of precomputed table (i.e. #{ d : d ∈ D*}, and the nonzero density.  Table 3.3 

shows the comparison of these characterizing properties, where SW is an 

abbreviation for sliding window. 

Scheme Table Size 1/ nonzero density 

SW+ NAF [33] w 22 −−−−  
w

w 2

( 1 )4
3 3.2

w −−−−

−−−−
+ −+ −+ −+ −  

wNAF  [17][18] w w 11 ( 2 ( 1) )
3

+++++ −+ −+ −+ −  w +1 

wMOF  [27] w 22 −−−−  w +1 

Table 3.3 General comparison of table size and non-zero density  

 
3.2.4.3 Exponentiation with wMOF, w >2  

All algorithms for generating wNAF need carry-overs, as result the recoding is 

restricted to be done right-to-left.  In the context of memory constraint devices, a 

small digit set D is even more valuable, because fewer precomputed elements 

have to be stored.  Although none of the preceding methods is a left-to-right 

scheme, each one requires additional memory O(n) to store the recoded string 

before starting the left-to-right evaluation of the exponent product. The 
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advantages of exponentiation with wMOF, the digit set of wMOF is the same as 

for wNAF, and turns out as a complete left-to-right scheme. The evaluation stage 

can be performed left-to-right, and the recoding into wMOF proceed left-to-right, 

this due to no additional memory required for performing the exponentiation, 

since algorithm 13 requires only O(w) bits memory for generating wMOF[27]. 

Okeya and Takagi [27] constructed an algorithm to compute table look-up for 

any w in an efficient way, and less memory usage.  This table enables to merge 

the evaluation stage that can be performed left-to-right, and the recoding into 

wMOF. 

1. Computation Table look-up  

The table computation algorithm 3.11 has to compute γ and ξ which fit the 

equation c = γ*2ξ, and the converted one wMOF δ
 
 is obtained from γ and ξ as:  

 δ  321321
ξξ

γ 0 ..., 0, , ),0 ..., 0,( 

1-w −

=                                         (3.8) 

Algorithm 3.11   Table Computation with Width w    [27] 

INPUT: width w. 

OUTPUT: arrays γ0...tw and ξ0...tw where tw = 2w - 1. 

   1. For k ← 2w-1 to 3 *2w-1 - 1 do the following 

     1.1   c  ← (k & (2w - 1)) - (k >> 1) 

     1.2   ξk-2
w-1 ← 0 

     1.3.  While (c & 1) = 0 do the following 

           1.3.1  ξk-2
w-1 ← ξk-2

w-1 + 1 

           1.3.2  c← c >> 1 

    1.4. γk-2
w-1 ← c 

  2. return γ0...tw and  ξ0...tw 
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We can observe from algorithm that ξ is in {0, 1, ...,w - 1} which are w 

different values,  wlog  2  bits are required to store ξ and each element of γ is in 

{±1, ±3, ..., ±(2w-1 - 1)} which has the cardinality of 2w-2 and requires w - 2 pre-

commuted points. 

2. Computation of Precomputed points  

Further, the precomputations (2w-2- 1) of elliptic pints are required, since wMOF is 

signed binary representations.  Those points are all points of the form γP, where γ 

∈ signed digit set D = {0,±1, ±3, ..., ±(2w-1 - 1)}, and P is an elliptic point .  

3.   On the Fly Multiplication for w > 2 

Finally the table look-up created in algorithm 3.12 computed and precomputed 

points are used to merge the recoding and evaluation stages for any w.  

Algorithm 3.12   Exponentiation  with wMOF    [27] 
INPUT a non-zero t-bit binary string k, a point P and the multiple of the 

point P, γ0...tw and ξ0...tw, the precomputed table look-up . 

OUTPUT exponentiation  kP. 

1. i  ← t 

2. Q ← Ο 

3. While i ≥ 1 do the following 

3.1. if (ki XOR ki-1) = 0, then do the following 

3.1.1. Q ←ECDBL(Q) 

3.1.2.  i  ← i - 1 

3.2. else do the following 

3.2.1. index ← ((k >> (i - w)) & (2w+1 - 1)) - 2w-1 

3.2.2. For j = 1 to w - ξindex do the following 

1. Q ← ECDBL(Q) 

2. i  ← i - 1 
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3.2.3. Q ← ECADD(Q, γindexP) 

3.2.4. For j = 1 to ξindex do the following 

1. If i ≥ 0 then Q ← ECDBL(Q) 

2. i ← i - 1 

4. If i = 0 do the following 

4.1. Q ← ECDBL(Q) 

4.2. If k0 = 1 then Q ← ECADD(Q,-P) 

5. return Q 
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CHAPTER 4 

4 Contribution of This Thesis 

Chapter 3 presents typical methods for exponentiation, where addition of two 

points and doubling of two points are performed repeatedly.  These methods can 

speed up exponentiation by reducing addition, but the doublings are quite costly. 

This chapter introduces new formula works with wMOF for speed up 

exponentiation on an elliptic over Fp. This formula can increase the speed of 

doubling by trading inversion for multiplication.  In addition, we show the actual 

performance of the newly introduced algorithm and how this formula can improve 

wMOF method.  

4.1 Direct Computation of 2 1n n
2 (2 P +Q) in affine coordinate  

On method to increase the speed of doublings is direct computation of several 

doublings, which can compute 2nP directly from P ∈ E(Fq), without computing 

the intermediate points 2P,22P,…,2n-1.[28]. 

Guajardo and Paar[11] suggested increase doubling speed by formulating 

algorithms for direct computation of 4P, 8P, and 16P on elliptic curves over F2
m 

in terms of affine coordinates. Sakai and Sakurai[28] proposed formulae for 

computing 2nP directly (∀n≥1) on E(Fp) in terms of affine coordinates. 

These formulas require only one inversion for computing 2nP instead of n 

inversions in regular add-double method. Therefore direct computation of several 
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doublings may be effective in elliptic curve exponentiation because modular 

inversion is more expensive than multiplication. 

In this thesis we derive formula for computing ( )2 1n n2 2 P+Q  directly from a 

given point P, Q ∈ E(Fp) without computing the intermediate points 

1n22P, 2 P, , 2 P,L 1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q),L −−−−  where n1≥1, in terms of affine 

coordinate.  This formula can work with wMOF exponentiation method. 

 We begin by constructing formula for small n1, n2, then we will construct 

algorithm for general n1, n2.   

As an example Let n1 = 2, n2 = 1, let P1 = (x1, y1), Q = (x, y), 1 1 1P ( x , y )′ ′ ′=  ∈ 

E(Fp) then for an elliptic curve with weierstrass form in terms of affine 

coordinates ′ ′ ′ ′2 1 1 2 2P = 2P  = 2(4P +Q) = (x , y ) can computed as the following  

1) Computing 14P  as in [28] 

Let 

      0 1C = y  

      0 1A  = x  

      2
10B  =3x +a  

      
4

2
  0 0

2
  0 0 0

2
1 0

1 0 1

A  =B - 8A C

C  =-8C - B (A -4A C )
 

      2 4
1 1 0B 3A 16aC= +   

      2
  1
2

2 1 1A  =B - 8A C  

      4 2
  1 1 12 1 2C  =-8C - B (A -4A C )     

Then computing  14P  = P4 = 4 4(x , y )  can be computed as follows.  
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      2
4 2

0 1

A
x

( 4C C )
=                                                   (4.1) 

      2
4 3

0 1

C
y

( 4C C )
=                                                  (4.2) 

2) Computing 1(4P +Q)  

Assume 14P  = 4 4(x , y ) ≠ -Q. Recall from section 2.3, the point addition  

1 1 1P ( x , y )′ ′ ′=  = 1(4P +Q)  in term of affine coordinates, can be computed as follows: 

1x′  = λ2 - x- 4x                                                         (4.3) 

1y′  = λ ( x  - 1x′ ) - y                                                   (4.4)                                               

4

4

(y  - y)
 = 

(x  - x)
λ                                                             (4.5) 

Substituting x4, y4 by equations (4.1) and (4.2) respectively into the expression for 

λ  we readily find  

2
3

0 1

2
2

0 1

C
(  - y)
(4C C )

 = 
A

(  - x)
(4C C )

λ                                                 (4.6) 

After simplification equation (4.6) we get  

3
2 0 1

2
0 1 2 0 1

C  - (4C C ) y
 = 

(4C C )(A  - (4C C ) x)
λ                               (4.7)                                       

Now let   

      3
2 0 1T =C ( 4C C ) y,−  2

2 0 1S A ( 4C C ) x,= −  we get: 

0 1

T
 = 

(4C C )S
λ                                                          (4.8) 

Substitutingλ , and 4x  into the expression for 1x ,′  we find  
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1x′  = 
2

2 2
0 1

T

(4C C ) S
  - x- 2

2
0 1

A

( 4C C )
                         (4.9) 

After simplification equation (4.9) we get: 

1x′  = 
2 2 2

2 0 1
2 2

0 1

T S (A (4C C ) x

(4C C ) S

− +
                             (4.10) 

Let 2
2 0 1M A ( 4C C ) x,= +  we get:  

                         1x′  = 
2 2

2 2
0 1

T MS

(4C C ) S

−
                                                 (4.11) 

Let 2 2
0A T MS ,′ = −  we get: 

1x′  = 0
2 2

0 1

A

(4C C ) S

′
                                                  (4.12) 

Substitutingλ , and 1x′  from equation (4.12) into the expression for 1y ,′  we find  

1y′  = 
0 1

T

(4C C )S
 0

2 2
0 1

A
x- -y

(4C C ) S

 ′
 
 
 

                    (4.13)   

After simplification we get: 

1y′  = 
3 3 2 2

0 1 0 0 1
3 3

0 1

(4C C ) yS T(A (4C C ) xS )

(4C C ) S

′− − −
      (4.14)     

Let 3 3 2 2
0 0 1 0 0 1C (4C C ) yS T( A ( 4C C ) xS ),′ ′= − − −  we get: 

1y′  = 0
3 3

0 1

C

(4C C ) S

′
                                                  (4.15) 

3) Computing 12(4P +Q)= ′12P    

Recall from section 2.2, the point doubling ′12P  = 2 2 2P = (x , y )′ ′ ′  in term of affine 

coordinates, can be computed as follows: 

′2x  = λ2   - 2 1x′                                                         (4.16) 

′2y  = λ ( 1x′  - ′2x ) - 1y′                                             (4.17)                                               
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λ= 
2 

11

1

3x a

2y

′ +
′

                                                          (4.18) 

Substituting 1x ,′  1y′  by equations (4.12) and (4.15) respectively into the expression 

for λ  we readily find  

λ=

2
0

2 2
0 1

0
3 3

0 1

A
3 a

(4C C ) S

C
2

(4C C ) S

 ′
+ 

 
 

 ′
  
 

                                      (4.19) 

After simplification we get: 

λ=
2 4 4
0 0 1

0 0 1

3A a(4C C ) S

2C (4C C )S

′ +
′

                                         (4.20) 

Now let 
′ ′= +2 4 4
0 0 0 1B 3A a( 4C C ) S ,  we get:  

 λ= 0

0 0 1

B

2C (4C C )S

′

′
                                                    (4.21) 

Substitutingλ , and 1x′  into the expression for 2x ,′  we find  

′2x  = 
2
0

2 2 2
0 0 1

B

(2C ) (4C C ) S

′

′
 - 0

2 2
0 1

A
2

(4C C ) S

 ′
 
 
 

         (4.22)  

After simplification we get: 

′2x  = 
2

 0 0
2

0 0
2 2 2

0 0 1

B - 8A C

(2C ) (4C C ) S

′ ′ ′

′
                                         (4.23) 

Let ′ ′ ′ ′2 0 0
2

1 0A  =B - 8A C , we get:     

′2x  = 1
2 2 2

0 0 1

A

(2C ) (4C C ) S

′

′
                                      (4.24) 

Substitutingλ , ′1y , 1x′  and ′2x  into the expression for ′2y , we find  

′2y = 0

0 0 1

B

2C (4C C )S

′

′
0

2 2
0 1

A

(4C C ) S

 ′
 
 
 

- 1
2 2 2

0 0 1

A

(2C ) (4C C ) S

 ′
 
 ′ 

- 0
3 3

0 1

C

(4C C ) S

′     (4.25)    

After simplification we get: 
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′2y =
4 2

 -0 0 00 1
3 3 3

0 0 1

-8C - B (A 4A C ) 

(2C ) (4C C ) S

′ ′ ′ ′ ′

′
                                     (4.26) 

Let 4 2
0 0 1 0 0C =-8C B (A 4A C ),′ ′ ′ ′ ′ ′− −  we get finally:  

    ′2y = 1
3 3 3

0 0 1

C  

(2C ) (4C C ) S

′

′
                                      (4.27)       

Algorithm 4.1 shows the general formulae that allow direct computing  

2 1n n2 (2 P +Q)  for n1 ≥ 1. 

Algorithm 4.1    Direct Computation of 2 1n n
2 (2 P +Q) in affine coordinate, 

where  n1 ≥≥≥≥ 1,  and P, Q ∈∈∈∈ E(Fp) . 

INPUT: P1= (x1, y1), Q = (x, y) ∈ E(Fp)  

OUTPUT: 4 4 4
4 4

12 2 2
P  = 2 P =2 (2P +Q)= (x , y )′ ′ ′ ′ ∈ E(Fp)  

1. Compute A0 and C0 and B0 

            0 1C = y  

            0 1A  = x  

   2
10B  =3x +a  

2. For i from 1 to n1 Compute Ai, Ci , for i from 1 to n1 -1 Compute  Bi  

            2
 i-1 i-1

2
i i-1A =B - 8A C  

            4
i-1

2
 i i-1 i-1i-1iC  =-8C -B (A -4A C )  

   ∏2
i-1

i 4
i i j

j=0

B  =3A +16 a( C )    

3. Compute the N, V, W, Z  then 0A′ , 0C′  

1
1

n -1
n 2

2 i
i=0

N A (2 C ) x= − ∏  

1
1

n -1
n 2

2 i
i=0

V A (2 C ) x= + ∏  
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1
1

n -1
n 3

2 i
i=0

W=C (2 C ) y− ∏  

= ∏
1

1

k -1
k

i
i=0

Z (2 C )N  

   

′ = −

′ ′= − − −

2 2
0

3 2
0 0

A W VN

C Z y W( A Z x )  

4.       2if  (n > 0)   

   Compute 0B′   

         2 4
0 0B 3A aZ′ ′= +  

   For i from 1 to n2 Compute i iA , C  ′ ′ , for i from 1 to n2 -1 Compute  iB′  

           2
 i i

2
i i-1A  =B - 8AC′ ′ ′ ′  

           4 2
 -i-1 i ii i-1 iC  =-8C - B (A 4AC )  ′ ′ ′ ′ ′ ′  

 
i-1

2 i 4 4
i i 1 j

j=0

B 3A 16 aZ ( C )−′ ′ ′= + ∏  

   Compute  Z 

       Z = 
2

2

n -1
n

i
i=0

Z(2 C )′∏  

5. Compute k k2 22 2
x , y′ ′  

               2
n2

n

2 2

A
x

Z

′
′ =  

            2
n2

n

2 3

C
y

Z

′
′ =   

_______________________________________________________________ 

Theorem 4.1 describes the computational complexity of this formula.  

Theorem 4.1 In terms of affine coordinates, there exits an algorithm that 

computes 2 1n n2 (2 P +Q)  at most (4(n+2) +2) M, (4(n+1) + 2)S , and I in Fp  for 
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any point P,Q ∈ E(Fp) where M, S and I denote multiplication, squaring and 

inversion respectively, and n=n1 + n2. 

Proof The complexity of step 1 and step 2 the same as in [28, Algorithm1]   

involve (2M + 3S)n1 + (M+S)(n1 -1) + S  

In step 3, we first compute
1n -1

i
i=0

 C∏ which takes 
1
n -1  multiplication. Secondly, 

we perform one squaring to compute .
1

1

n -1
n 2

i
i=0

 (2 C )∏  Next, we perform one 

multiplication to compute
1

1

n -1
n 2

i
i=0

 (2 C )∏ x. Then we obtain N, and V. Next, we 

perform two multiplications, one multiplication to compute
1

1

n -1
n 2

i
i=0

 (2 C ) y∏  and 

other to compute
1 1 1

1 1 1

n -1 n -1 n -1
n n n2 3

i i i
i=0 i=0 i=0

 (2 C )(2 C ) y (2 C ) y=∏ ∏ ∏ .  Then we obtain W. 

Third we perform two squaring to compute ,2 2W ,N  and one multiplication to 

compute 2VN . Then we obtain 0A′ . Forth, we perform one multiplication to 

compute .
1

1

n -1
n

i
i=0

 (2 C )N∏  Then we obtain Z. Next we perform two squaring to 

compute 2Z ,  4Z ,and one multiplication to compute .3Z  Next we perform two 

multiplications to compute 2Z x, 3z y . Finally we perform one multiplication to 

compute 2
0W( A Z x )′ − . Then we obtain 0C′ .  The complexity of step 3 involves (n1 

-1)M + 9M +5S . 
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In step 1 we perform one squaring to compute 2
0A′ . Next we perform one 

multiplication to compute 4aZ , where 4Z  is computed in step 3. Then we 

obtain 0B′ . The complexity of step 4.1 involve M + S and the complexity of step 2 

involves (2M + 3S)n2 + (M+S)(n2 -1) as step 2.  

In step 3 we compute 
2n -1

i
i=0

C′∏  which takes n2-1 multiplications.  Secondly, we 

perform one multiplication to compute .
2

2

n -1
n

i
i=0

Z(2 C )′∏  Then we obtain new value 

for Z. the complexity of sub-step 3 involves n2 M. Hence, the complexity of step 4 

involves 4n2 M + 4n2 S.   

In step 5, we perform one inversion to compute -1Z  and the result is set to T. 

Next, we perform one squaring to compute T
2
. Next, we perform one 

multiplication to compute .
2

2
n A T′  Then we obtain .n22

 x′   Finally we perform two 

multiplications to compute
2

2
n C T T′ . Then we obtain .n22

 y′  The complexity of 

step 5 involves 3M + S + I.  Therfore the complexity of above computations 

involve (4(n+2) +2) M, (4(n+1) + 2)S, where n= n1 + n2.                                         

4.1.1 The Break-Even Point 

For application in practice it is highly relevant to compare the complexity of our 

newly derived formulae for direct computing of n doublings separated with one 

addition and individual n doublings. The performance of the new method depends 

on the cost factor of one inversion relatively to the cost of one multiplication. For 
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this purpose, we introduce, as [11], the notation of a "break even point".  It is 

possible to express the time that it takes to perform one inversion in terms of the 

equivalent number of multiplication needed per inversion. Table 4.1 shows the 

number of squarings S, multiplications M, and inversions I in Fp.  

     
Complexity Calculation 

with n 

Method 

S M I 

Break-Even 

Point 

DECDBL(4)   22 26 1 4 

4 doublings + 1 addition 10 9 5 

6.6 M < I 

DECDBL(5)   26 30 1 5 

5 doublings + 1 addition 12 11 6 

6 M < I 

DECDBL(w)   4w+6 4w+10 1 w 

w doublings + 1 addition 2w+1 2w+2 w+1 

(3.6 w +12)
M

w
 

Table 4.1  Complexity comparison: Individual doublings and one addition vs. direct 

computation of several doublings with one addition. 

 In general let n = n1 +n2, and let us denote the direct computing of 

2 1n n2 (2 P +Q)  by symbol DECDBL(n).  Then our formulae can outperform the 

regular double and add algorithm if the following relation to hold:  

Cost( separate n ECDBLA + ECADDA) > Cost( DECDBL(n)  ) 

Ignoring squarings and additions and expressing the Cost function in terms of 

multiplications and inversions, we have: 

 (2n M +2n S + n I + 2M + S + I ) > ( 4(n +2)M + 4(n+1)S +2M +2S + I) 

We define r = I/M (the ratio of speed between a multiplication and inversion), and 

assume that one squaring has complexity S = 0.8 M[28].   We also assume that the 

cost of field addition and multiplication by small constants can be ignored.  One 

can rewrite the above expressions as: 
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n r M  > (2nM + 8M + 1.6n M + 4M)  

Solving for r in terms of M one obtains: 

(3.6 n +12)
r > M

n
 

As we can see from Table 4.1, if a field inversion has complexity I > 7.6 M, 

direct computation of 3 doublings with one addition may be more efficient than 3 

separate doubling and one adding.  

4.2 Exponentiation with Direct Computation of  2 1n n
2 (2 P +Q)  

By using our previous formulae for direct computation of ( ),2 1n n2 2 P+Q  where 

n1 ≥ 1, and P,Q ∈ E(Fp), we can improve algorithm 3.12 for elliptic curve 

exponentiation with wMOF by change step 3.2 of algorithm 3.12 with a new step 

that compute ( )2 1n n2 2 P+Q directly  as in the following algorithm.  

  Algorithm 4.2  Exponentiation with wMOF Using Direct Computation of 
2 1n n

2 (2 P +Q)  

INPUT a non-zero t-bit binary string k, a point P and the multiple of the 

point P, γ0...tw and ξ0...tw, the precomputed table look-up . 

OUTPUT exponentiation  kP. 

1. i  ← t 

2. Q  ← O 

3. While i ≥ 1 do the following 

3.1. if (ki XOR ki-1) = 0, then do the following 

3.1.1. Q ←ECDBL(Q) 

3.1.2. i  ← i - 1 

3.2. else do the following 

3.2.1.  index  ← ((k >> (i - w)) & (2w+1 - 1)) - 2w-1 
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3.2.2.  if ( i < w)      Q ← 2 i -(w-ξindex) +1 (2w-ξindex Q + γindexP) 

3.2.3  else if ( i ≥ w)  Q ← 2ξindex (2 w-ξindex Q + γindexP) 

3.2.4.  i ← i - w 

4. If i = 0 do the following 

4.1. Q ← ECDBL(Q) 

4.2. If k0 = 1 then Q ← ECADD(Q,-P) 

5. return Q 

 

In algorithm 4.2, for each window width w of wMOF, Step 3.2.1 performs 

direct computation of  2i-(w-ξindex) +1
(2
w-ξindex Q + γindexP) if (i < w) otherwise Step 

3.2.2 performs direct computations of 2ξindex
(2
w-ξindex Q+ γindexP) if (i ≥ w), where 

ξindex = 0,1,…w-1,  γindexP ={±1, ±3, ..., ±(2w-1 - 1)}. 

4.2.1 Complexity Analysis of the wMOF Method 

In this subsection, we perform an analysis of wMOF method when it used in 

conjunction with the ( )2 1n n2 2 P+Q  formula.  In addition, we compare the 

complexity of wMOF method, with and without formula. Moreover we derive an 

expression that predicts the theoretical improvement of the wMOF method by 

using the formulae in terms of the ratio between inversion and multiplication 

times.  

Theorem 4.2 describes the complexity of algorithm 3.12 for computing 

exponentiation with wMOF. 

Theorem 4.2 In terms of affine coordinate, Let P ∈ E(Fp), t-digits exponent  in 

wMOF, then the complexity of algorithm 3.12  for computing kP requires on 
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average 
(2w+4 )t (2w+3 )t (w+2 )t

M + S +  I 
w+1 w+1 w+1

,where M, S and I denote 

multiplication, squaring and inversion respectively.   

 
Proof   We noticed that algorithm 3.12 performs an ECADD operation each time 

the current digit δ
 
is non-zero, recall from theorem 3.12 that the average non-zero 

density of wMOF is asymptotically
1

+1w
 also, one ECDBL operation is performed 

in each iteration (where i ≥ 0) to double the intermediate result.  Then on average, 

algorithm 3.12 for computing exponentiation with wMOF requires 

t
t ECDBL +  ECADD

+1w
                          

Recall from table 2.2, the computational costs for doublings and additions 

operations in affine coordinate.  Then we can rewrite previous expression as:   

t
(2M + 2S + I )t  +  (2M + S + I )

+1w
                      

We can rewrite previous expression in terms of M, S, and I as:   

 
(2 +4 )t (2 +3 )t ( +2 )t

M   +  S + I 
+1 +1 +1

w w w

w w w
                                   

Now Theorem 4.3 describes the complexity algorithm 4.2 for computing 

exponentiation with wMOF by using ( )2 1n n2 2 P+Q . 

Theorem 4.3 In terms of affine coordinate, Let P ∈ E(Fp), and  t-digits exponent 

in wMOF, then the complexity of algorithm 4.2  for computing kP requires on 
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average 
4( +3 )t 4( +2 )t 2t

M + S + I,
+1 +1 +1

w w

w w w
 where M, S and I denote multiplication, 

squaring and inversion respectively.  

Proof  From theorem 3.12, for t-digits exponent k in its wMOF, if t → ∞ the 

average non-zero density of wMOF is asymptotically 
1

+1w
 and wMOF of k is 

infinity long sequence constituted from two types of blocks: 

1. b1 = (0), length of this block is 1; 

2. b2 = (0i * 0
w-i-1), length of this block is w and 0 ≤ i ≤  w - 1; 

Then the number of block b2 equals
1

+1w
 because every block b2 has a non-zero 

bit, and the number of block b1 equals amount of 0s in wMOF – the amount of 0s 

in b2   which equals 

         
1

( )( )
+1 +1

w
t w 1 t

w w
- - =

+1

t

w
   

Now, step 3.1 of algorithm 4.2 performs 
+1

1
t

w
 blocks b1 and step 3.2 performs 

+1

1
t

w
 block b2 then algorithm 4.2 for computing kP requires on average  

 ECDBL +  DECDBL( )
+1 +1

t t
w

w w
  

Recall from Table 2.2, the computational costs for doublings and additions 

operations in affine coordinate.  Then we can rewrite previous expression as:   

n
(2M+2S+I + 4(  +2)M +4( +1)S+2M +2S+I )

+1
w w

w
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We can rewrite previous expression in terms of M, S, and I as:   

   
4( +3 )t 4( +2 )t 2t

M + S + I 
+1 +1 +1

w w

w w w
                                                  

Relative Improvement 

Let us denote the times it would take to perform exponentiation by using 

algorithms 3.12, and 4.2 by symbols TRegular method, TFormula method respectively. 

According to theorems 4.2, and 4.3, we can derive expressions for the time it 

would take to perform a whole exponentiation with wMOF as: 

TRegular  method = 
(2 +4 )n (2 +3 )n ( +2 )n

M   +  S + I 
+1 +1 +1

w w w

w w w
     (4.28) 

TFormula  method = 
4( +3 )n 4( +2 )n 2n

M + S + I 
+1 +1 +1

w w

w w w
             (4.29) 

Notice that from equations 4.28, and 4.29, one can readily derive the relative 

improvement by defining r = I/M (the ratio of speed between a multiplication and 

inversion) as: 

Relative Improvement = 
Regular method Formula method

Regular method

T  - T

T
                             (4.30) 

By using (4.28) and (4.29) 

Relative Improvement = 
[( ) ( ) ]

( ) [( ) ( ) ]

wI 2w 8 M 2w 5 S

w 2 I 2w 4 M 2w 3 S

- + + +

+ + + + +
           (4.31)  

In our implementation S ≈ M and r = 12.6, let w = 4, then 

Relative Improvement is 
( )

( )

4 r 29

6 r 23

-
=

+
                                                  (4.32) 

Relative Improvement is 
( . )

( . )

4 12 6 29
100

6 12 6 23

-
= ´

+
= 21.7 %                    (4.33) 
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4.3 Implementation and Results  

 
In this section, we implement our methods and others, which have been given in 

previous sections to show the actual performance of exponentiation. 

Implementation of an ECC system have several choices, these include selection of 

elliptic curve domain parameters, platforms [6]. 

 
4.3.1 Elliptic Curves domain parameters and Platforms 

Generating the domain parameters for elliptic curve is vary time consuming. It 

consists of a suitably chosen elliptic curve E defined over a prime finite field Fp, 

and a base point G ∈ E(Fp). Therefore we select NIST-recommended elliptic 

curves domain parameters in [24]. We implement 4 elliptic curves over prime 

fields Fp, the prime modulo p are of a special type (generalized Mersenne 

numbers) with 2log p =160, 192, 224, 256. We call these curves as P160, P192, 

P224, or 256 respectively.  The parameters of these curves are in Appendix B. 

The ECC is implemented on a Pentium 4 personal computer (PC) with 2 GHz 

processor and 512 MB of RAM. Programs were written in Java language for 

multi-precision integer operations, and are ran under Windows XP.  

We used jBorZoi Library[4] in this implementation. jBorZoi is a Java Elliptic 

Curve Cryptography which implements cryptographic algorithms using elliptic 

curves defined over binary finite fields. We extended jBorZoi Library to 

implement cryptographic algorithms using elliptic curves defined over prime 

finite fields.  Complete code listings are provided in Appendix B. 
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4.3.2 Timings analysis of wMOF  Exponentiation  Method 
We performed timing measurements on the individual k doublings and one 

addition operations and the corresponding formulae for direct computation of one 

addition adjoint with k doublings. In addition, we developed timing estimates 

based on the approximately ratio of speed between a multiplication and inversion 

I/ M in prime filed Fp as presented in Table 4.2.  

Curves Average Timing 
(µsec)  for M 

Average Timing 
(µsec) for S 

Average Timing 
(µsec) for  I 

r = I / M 

P160       7.0   6.9  88.0 12.6 
P192       8.7   8.6 108.8 12.5 

P224 10   9.8 123.1 12.3 

P256 11.9  11.8 145.2 12.2 

Table 4.2   The ratio of speed between a multiplication and inversion in prime filed Fp 

 
4.3.2.1 Optimal Window Size 

To show the actual improvement of wMOF method with our new formula we 

must find out the most efficiency proper window size, where the length of input 

binary form is 160-bits, 192-bits, 224-bits, or 256-bits. Figures (4.1- 4.4) illustrate 

the relation among the window size w, the speed of the evaluation and pre-

computed processes.  We can noticed from these Figures that when the window 

size increases, time of the evaluation will decrease, while time of the 

precomputation will increase, and the optimal w is 4 when the input is 160-bits. 

and the optimal w is 5 when the inputs is 192, 224 or 256-bits.  So all the tests in 

this thesis will be processed for w = 4 in 160-bits input and w= 5 for 192, 224, or 

256-bits. 
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Figure 4.1  Pre-compute and evaluation with 160-bits input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.2    Pre-compute and evaluation with 192-bits input 
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Figure 4.3    Pre-compute and evaluation with 224-bits input 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.4    Pre-compute and evaluation with 256-bits input 

 
4.3.2.2 The performance of wMOF  method     

Table 4.3 shows how the wMOF can outperform the binary method (Add-Double) 

by taking the optimal window size w. 
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Time in mesec #  Pre- computed  points  
Curves  

Add- Double wMOF Add- Double wMOF 

P 160 27.1 22.6 0 3 
P 192 41.5 33.15 0 7 
P 224 54.8 46.2 0 7 
P 256 73.3 60.3 0 7 

Table 4.3  Comparison of add-double method vs. wMOF method to perform an 

exponentiation 

4.3.2.3 The performance of improved wMOF  method    

Using Table 4.2, we can readily predict that the timings for performing a 

exponentiation with and without the formulae presented in Algorithm 4.1.  In 

addition, using the complexity shown in theorems (4.2, 4.3) and the timings 

shown in Table 4.2 we can make estimates as to how long an exponentiation with 

wMOF will take using both doublings with formulae and individual doublings. 

% Improvement 
 Curves  Method 

Predicted 
Timing 

Measured 
Timing 

 Predicted Measured 
wMOF with formula (w = 4 ) 17.4 18.3 

P 160 
wMOF (w = 4) 22.2 23.4 

21.62 21.7 

wMOF with formula (w = 5 ) 23.8 24.3 
P 192 

wMOF (w = 5) 32 32.6 
25.62 25.7 

wMOF with formula (w = 5) 31.7 33.9 
P 224 

wMOF (w = 5) 42 45 
24.52 24.6 

wMOF with formula (w = 5 ) 43.8 47.4 
P 256 

wMOF (w = 5) 57.3 61.8 
23.5 23.3 

 
Table 4.4   Average time comparison required to perform an exponentiation without pre-

computations stage of a random point in mesc (Pentium IV   2.0 GHz). 
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CHAPTER 5 

5 Conclusion 

This thesis presented several methods which can be taken to efficiently implement 

cryptosystems on smart cards. 

As explained in Chapter 1, one of the most critical issues concerning 

cryptosystems is the security of the secret key which is used for signing and 

decrypting messages.  Due to their tamper resistance and mobility, smart cards are 

a good choice to serve as host for the secret keys and the cryptosystems. However, 

since the computational power and the available memory on smart cards are very 

limited, efficient implementations are needed. 

The first measure to reduce the memory and computational power required is 

to use cryptosystems that are based on the additive group of points on an elliptic 

curve. The main advantage of elliptic curves over commonly used groups is, that 

the same level of security can be achieved with much smaller key sizes, i.e. 160-

bit instead of 1024-bit.  

As it turned out, exponentiation is the most basic operation used in elliptic 

curve cryptosystems. We construct efficient algorithm for exponentiation on 

elliptic curve defined over Fp in terms of affine coordinates.  The algorithm 

computes ( )2 1n n2 2 P+Q  directly from random points P and Q on an elliptic 

curve, without computing the intermediate points.   We have showed in what way 

the formula for computing 2 1k k2 (2 P +Q) can improve the speed of the 
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exponentiation with wMOF. A comparison was made based on notation of a 

"break even point." which is the cost factor of one inversion relatively to the cost 

of one multiplication.  This algorithm can speed the wMOF exponentiation of 

elliptic curve of size 160-bit about (21.7 % ) as a result of its implementation with 

respect to affine coordinates.  
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Appendix A  Mathematical Background 

A.1 Basic Algebra 

We provide here the essential algebraic terminologies and concepts required for 

the understanding of the studies on elliptic curves. 

Definition A.1  A nonempty set of elements G is said to form a group (G, •) if in 

G there is defined an operation, called the product and denoted by •, such that  

1. a, b ∈ G implies that a•b ∈ G (closure). 

2. a, b, c ∈ G implies that a•(b•c) = (a•b)•c (associative law). 

3. There exists an element e ∈ G such that a•e = e•a = a for all a ∈ G (the 

existence of an identity element in G). 

4. For every a ∈ G there exists an element a-1 ∈ G such that a• a-1 = a-1•a = e 

(the existence of inverses in G). 

Definition A.2  A group G is said to be abelian (commutative) if a•b = b•a for all 

a, b ∈ G. 

Definition A.3 A field is a nonempty set of elements F with two operations, 

addition “+” and multiplication “×”, such that 

1. (F , +) is an abelian additive group. 

2. (F\{0}, ×) is an abelian multiplicative group, where 0 denotes the additive 

identity element. 

3. The distributive laws hold in F. 

From now on, F will always denote a field and F* will denote the group of 

nonzero elements of F, unless otherwise stated. 
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Definition A.4  The characteristic of F, denoted by char(F), is defined to be the 

smallest positive integer p such that pa = 0 for all a ∈ F.  If such an integer does 

not exist, char(F ) is zero. 

Definition A.5  A finite field Fq is a field that has a finite number q of elements.  

In particular, for a prime p, Fp is the field of equivalence classes of integers 

modulo p and thus has a finite number p of elements. 

Definition A.6  A field K is said to be an extension of  F if  K contains F. 

Definition A.7   The ring of polynomials F [x] in x over F is the set of all formal  

expressions f(x) = a0 + a1x+ 
…
 + anx

n ≥ 0,  ai∈ F for all i = 0, 1, …, n. 

Definition A.8  Let f(x)∈ F[x], If f(x) ≠ 0 and an ≠T 0, then the degree of f(x), 

written as deg f(x), is n. 

Definition A.9  F is said to be algebraically closed if for every fT (x) ∈ F[x] of deg 

f(x) ≥ 1, f(x) has a root in F. 

Definition A.10  Let F be a field and let V be an additive abelian group. V is 

called a vector space over F if an operation F × V  V is defined so that the 

following conditions are satisfied: 

1. a(u + v) = au + av 

2. (a + b)u = au + bu 

3. a(bu) = (a . b)u 

4. 1u = u 

The elements of V are called vectors and the elements of F are called scalars. 

Definition A.11   Let V be a vector space over a field F and let v1, v2,…., vm ∈ V . 

Any vector in V of the form 
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c1v1 + c2v2 + …. + cmvm 

where ci ∈ F (i = 1,…,m) is a linear combination of v1, v2,…., vm. The set of all 

such linear combinations is called the linear span of v1, v2,…., vm and it is denoted 

by span(v1, v2,…., vm).  The vectors v1, v2,…., vn are said to span or generate V if 

V = span(v1, v2,…., vn). 

Definition A.12  Let V be a vector space over a field F. The vectors v1, v2,…., vm 

∈ V are said to be linearly independent over F if there are no scalars c1, c2,…., cm 

∈ F (not all 0) that satisfy 

c1v1 + c2v2 + …. + cmvm = 0 

Definition A.13 A set S = {u1, u2,…., un} of vectors is a basis of V if and only if u1, 

u2,…., un are linearly independent and they span V.  If S is a basis of V, then every 

element of V is uniquely represented as a linear combination of the elements of S. 

If a vector space V has a basis of a finite number of vectors, then any other basis 

of V will have the same number of elements.  This number is called the dimension 

of V over F. 

 

A.2 Projective Space 

 
Definition A.10  The affine plane A2(F) over F is the usual plane, A2(F) ={(x, y)| 

x, y∈ F }. 

Definition A.11 Define an equivalence relation on the triples over F, not all 

components zero, as follows: (X, Y, Z) :  (X , Y , Z )′ ′ ′′ ′ ′′ ′ ′′ ′ ′  if and only (X , Y , Z )′ ′ ′′ ′ ′′ ′ ′′ ′ ′ = λ(X, 

Y, Z) for some λ in F*. Then each equivalence class (X, Y, Z) is called a projective 
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point and the numbers X, Y, Z are called the homogeneous coordinates of that 

point. For instance, 1 1 2
4 2 3

( , , )  is equivalent to (3, 6, 8) (use λ = 12). 

The set of equivalence classes with respect to : is called 2-dimensional projective 

space over F and is denoted P2. The equivalence class of (X, Y, Z) in P2 is 

typically written [X, Y, Z] to avoid confusion with affine space. 

Definition A.12 The projective plane P2(F) over F is the set of all projective 

points. 

P2(F)={ [X, Y, Z] |X ,Y, Z not all zero} 

For each projective point has Z ≠ 0, a typical element [X, Y, Z] is equivalent to 

[x, y, 1], where x = X/Z, y =Y/Z.  The set of these points is a copy of A2(F). 

For each projective point has Z = 0, a typical element like [X, Y, 0].  Note that 

either X or Y is nonzero if X ≠ 0, then the [X, Y, 0] is equivalent to Y
X

[1, , 0]  

which is essentially a copy of A1(F).  If X = 0, then the typical point has the form 

[0, Y, 0], which is equivalent to [0, 1, 0] since Y is nonzero.  Thus the set of these 

points is union of A1(F) and the point [0, 1, 0], which is essentially a copy of 

P1(F). This set is often referred to as the “line at infinity". 

Therefore the projective plane P2(F) can be thought of as a disjoint union of 

the affine plane A2(F) with the line at infinity. 
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Appendix B 

B.1  Recommended NIST Elliptic Curves over Prime Fields 

The following parameters are given for each elliptic curve: 

P             The order of the prime field Fp. 

a,b          The coefficients of the elliptic curve b  ax  x  y 32 ++=   where a, b pF ∈
 

             
   and 0 )27b  (4a 23 ≠+ .  The selection a = -3 was made for reasons of  

                efficiency; 

xG, yG    The x and y and coordinates of the base point G. 

n              The (prime) order of G 

h               The co-factor. 

P-160:   p = 2160 −2933,   a = -3, h = 1, 

b   =  621468235513391651506736229084534968416800501622 

xG = 915905815259634185505956735251349426573212034266                                

yG =  143158991128202063035631472543963517040298418778  

n   =  1452046121366725933991671292371452349213344743009 

P-192:   p = 2192 -264 - 1,   a = -3, h = 1, 

b    =  0x 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1 

XG = 0x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012 

yG = 0x  07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811 

n   =  0x FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831 

 

P-224: p = 2224 - 296 +1, a = -3, h = 1, 

b   = 0x B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943  

2355FFB4 

xG = 0x B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 
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115C1D21 

yG = 0x BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 

85007E34 

n   = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945 

5C5C2A3D 

P-256: p = 2256 - 2224 + 2192 +296
 - 1, a = -3, h = 1, 

b = 0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 

3BCE3C3E 

            27D2604B 

xG= 0x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 

F4A13945 

             D898C296 

yG= 0x 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE 

CBB64068 

             37BF51F5 

n  = 0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 

F3B9CAC2 

            FC632551 

 
B.2  Complete Java code  
 
 
package com.dragongate_technologies.borZoi; 
import java.math.*; 
import java.util.Date; 
public class ECurveFp 
    extends ECurve { 
 protected static final BigInteger ZERO = BigInteger.ZERO; 
     /** 
      *  <code>constant</code> 1 
      */ 
     protected static final BigInteger ONE = BigInteger.ONE; 
     /** 
      *  <code>constant</code> 2 
      */ 
     protected static final BigInteger TWO = new BigInteger("2"); 
     /** 
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      *  <code>constant</code> 3 
      */ 
     protected static final BigInteger THREE = new BigInteger("3"); 
     /** 
      *  <code>constant</code> 4 
      */ 
     protected static final BigInteger FOUR = new BigInteger("4"); 
     /** 
      *  <code>constant</code> 8 
      */ 
     protected static final BigInteger EIGHT = new BigInteger("8"); 
     /** 
      *  <code>constant</code> 12 
      */ 
     protected static final BigInteger TWELVE = new BigInteger("12"); 
     /** 
      *  <code>constant</code> 16 
      */ 
     protected static final BigInteger SIXTEEN = new BigInteger("16"); 
    public ECurveFp(Fp a4, Fp a6) { 
    this.a4 = (Fp) a4.clone(); 
    this.a6 = (Fp) a6.clone(); 
  } 
 
  public ECPoint doubl(ECPoint P0) { 
    BigInteger a, b, lambda, x0, y0, x1, y1, x2, y2; 
    a = a4.val; 
    b = a6.val; 
    x0 = P0.x.val; 
    y0 = P0.y.val; 
    x1 = P0.x.val; 
    y1 = P0.y.val; 
    ECPointFp P2 = new ECPointFp(); 
    if ((P0.isZero())||(P0.y.isZero())) { 
      return P0; 
    } 
    else { 
      lambda = Fp.Fp_mul(x0, x0).multiply(BigInteger.valueOf(3)); 
      lambda = Fp.Fp_add(a, lambda); 
      lambda = Fp.Fp_mul(lambda, Fp.Fp_inv(y0.multiply(BigInteger.valueOf(2)))); 
      x2 = Fp.Fp_add( (x0.negate()).multiply(BigInteger.valueOf(2)), 
                     Fp.Fp_mul(lambda, lambda)); 
      y2 = Fp.Fp_mul(Fp.Fp_add(x0, x2.negate()), lambda); 
      y2 = Fp.Fp_add(y2, y0.negate()); 
      P2.x.val = x2; 
      P2.y.val = y2; 
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    } 
    return P2; 
  } 
  public ECPoint add(ECPoint P0, ECPoint P1) { 
    BigInteger a, b, lambda, x0, y0, x1, y1, x2, y2; 
    a = a4.val; 
    b = a6.val; 
    x0 = P0.x.val; 
    y0 = P0.y.val; 
    x1 = P1.x.val; 
    y1 = P1.y.val; 
 
    ECPointFp P2 = new ECPointFp(); 
    if (P0.isZero()) { 
      return P1; 
    } 
    if (P1.isZero()) { 
      return P0; 
    } 
    if (P0.x.compareTo(P1.x) != 0) { 
      lambda = 
          Fp.Fp_mul( 
          Fp.Fp_add(y0, y1.negate()), 
          Fp.Fp_inv(Fp.Fp_add(x0, x1.negate()))); 
      x2 = Fp.Fp_add(x0.negate(), Fp.Fp_mul(lambda, lambda)); 
      x2 = Fp.Fp_add(x2, x1.negate()); 
      y2 = Fp.Fp_mul(Fp.Fp_add(x0, x2.negate()), lambda); 
      y2 = Fp.Fp_add(y2, y0.negate()); 
      P2.x.val = x2; 
      P2.y.val = y2; 
    } 
    else if (P0.y.compareTo(P1.y) != 0) { 
      return P2; 
    } 
    else if (P1.x.isZero()) { 
      return P2; 
    } 
    else { 
      return doubl(P0); 
    } 
    return P2; 
 
  } 
    
    public ECPoint mul(BigInteger n, ECPoint P) { 
    ECPoint Q; 
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    ECPoint S = new ECPointFp(); 
    BigInteger k; 
    if (n.compareTo(BigInteger.valueOf(0)) == 0) { 
      return new ECPointFp(); 
    } 
 
    if (n.compareTo(BigInteger.valueOf(0)) < 0) { 
      k = n.negate(); 
      Q = P.negate(); 
    } 
    else { 
      k = n; 
      Q = P; 
    } 
 
    for (int j = k.bitLength() - 1; j >= 0; j--) { 
      S = doubl(S); 
      if (k.testBit(j)) 
         S = add(S, Q); 
     } 
    return S; 
  } 
  public ECPoint[] pre_ECpoints(ECPoint P) { 
    int m; 
    ECPoint[] G; 
    m = Pre_Table.pow(2, Pre_Table.Win - 1); 
    G = new ECPoint[m]; 
    G[1] = P; 
    G[2] = doubl(P); 
    for (int j = 1; j < m / 2; j++) { 
        G[ (2 * j + 1)] = add( (G[ (2 * j - 1)]), (G[2])); 
    } 
    return G; 
 } 
  public ECPoint Im_wMOF(BigInteger d, ECPoint P) { 
    Date d1,d2; 
    long x1,x2; 
    ECPoint Q = new ECPointFp(); 
    ECPoint P1 =new ECPointFp(); 
    ECPoint[] G; 
    ECPoint infinty, K; 
    BigInteger tk; 
    int m, index, i; 
    String s; 
    char n_bits[]; 
    m = Pre_Table.pow(2, Pre_Table.Win - 1); 
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    int tw = Pre_Table.pow(2, Pre_Table.Win); 
    s = new String(" "); 
    s = d.toString(2); 
    n_bits = new char[s.length() + 1]; 
    s.getChars(0, s.length(), n_bits, 1); 
    n_bits[0] = '0'; 
    infinty = new ECPointFp(); 
    Q = infinty; 
    i = s.length(); 
    index = 0; 
    int j; 
    // precomputation  stage 
    G = pre_ECpoints(P); 
    while (i >= 1) { 
       j = s.length() - i; 
       if (n_bits[j] == n_bits[j + 1]) { 
          Q = doubl(Q); 
          i = i - 1; 
       } 
       else { 
          index = (d.shiftRight(i - Pre_Table.Win)).intValue(); 
          index = (index & (2 * tw - 1)) - tw / 2; 
          if (Pre_Table.gama[index] > 0) 
                P1 =G[Pre_Table.gama[index]]; 
             else if (Pre_Table.gama[index] < 0) 
                P1= G[- (Pre_Table.gama[index])].negate(); 
          if (i < Pre_Table.Win) 
             Q =D_Mu(Q,P1,Pre_Table.Win - Pre_Table.zeta[index],i- 
(Pre_Table.Win – 
                               Pre_Table.zeta[index])+1 ); 
          else 
             Q =D_Mu(Q,P1,Pre_Table.Win - 
Pre_Table.zeta[index],Pre_Table.zeta[index] ); 
          i=i-(Pre_Table.Win); 
      } 
    } 
 if (i == 0) { 
     Q = doubl(Q); 
     if (n_bits[s.length()] == '1') { 
        Q = add(Q, P.negate()); 
      } 
    } 
    return Q; 
  } 
 
  public ECPoint wMOF(BigInteger d, ECPoint P) { 



 95

     Date d1,d2; 
     long x1,x2; 
     ECPoint Q = new ECPointFp(); 
     ECPoint P1 = new ECPointFp(); 
     ECPoint[] G; 
     ECPoint infinty, K; 
     BigInteger tk; 
     int m, index, i; 
     String s; 
     char n_bits[]; 
     m = Pre_Table.pow(2, Pre_Table.Win - 1); 
     int tw = Pre_Table.pow(2, Pre_Table.Win); 
     s = new String(" "); 
     s = d.toString(2); 
     n_bits = new char[s.length() + 1]; 
     s.getChars(0, s.length(), n_bits, 1); 
     n_bits[0] = '0'; 
     infinty = new ECPointFp(); 
     Q = infinty; 
     i = s.length(); 
     index = 0; 
     int j; 
     // precomputation  stage 
     G = pre_ECpoints(P); 
     while (i >= 1) { 
       j = s.length() - i; 
       if (n_bits[j] == n_bits[j + 1]) { 
         Q = doubl(Q); 
         i = i - 1; 
       } 
       else { 
              index = (d.shiftRight(i - Pre_Table.Win)).intValue(); 
              index = (index & (2 * tw - 1)) - tw / 2; 
              for (int jj = 1; jj <=(Pre_Table.Win - Pre_Table.zeta[index]); jj++) { 
                     Q = doubl(Q); 
                     i = i - 1; 
                     } 
              if (Pre_Table.gama[index] > 0) { 
                Q = add(Q, G[Pre_Table.gama[index]]); 
 
           } 
           else if (Pre_Table.gama[index] < 0) { 
             Q = add(Q, G[ - (Pre_Table.gama[index])].negate()); 
 
           } 
           for (int jj = 1; jj <= Pre_Table.zeta[index]; jj++) { 
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             if (i >= 0) { 
 
             Q = doubl(Q); 
             } 
             i = i - 1; 
           } 
         } 
     } 
 
     if (i == 0) { 
       Q = doubl(Q); 
       if (n_bits[s.length()] == '1') { 
         Q = add(Q, P.negate()); 
       } 
     } 
     return Q; 
   } 
 
  public ECPoint D_exp(ECPoint Q,int k) { 
     ECPointFp P2 = new ECPointFp(); 
     if (Q.isZero()) { 
     return P2; 
    } 
    if (Q.y.isZero()) { 
     return P2; 
   } 
   else { 
     BigInteger[] A,B,C; 
     BigInteger DK,FB,RB,BK_2,U, BK_4,BK_S,CK_S,BK_T4,T,T_2,A_B; 
     DK=ZERO; 
     FB=ONE; 
     BK_4=ONE; 
     A=new BigInteger[k+1]; 
     B=new BigInteger[k+1]; 
     C=new BigInteger[k+1]; 
     U=ONE; 
     A[0]=Q.x.val; 
     B[0]=(Q.y.val); 
    // C[0]=Fp.Fp_add(Fp.Fp_mul( THREE,Fp.Fp_pow(A[0],2)),a4.val); 
     for (int jj = 1; jj <= k ; jj++) { 
             if (jj == 1) 
               U = a4.val; 
             else if (jj > 1) 
               U = Fp.Fp_mul(U, BK_4); 
             C[jj-1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[jj-1], 
                                            2)),Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, jj-1), U)); 
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             BK_2=Fp.Fp_mul(B[jj-1],B[jj-1]); 
             BK_4=Fp.Fp_mul(BK_2,BK_2); 
             A_B=Fp.Fp_mul(A[jj-1],BK_2); 
             A[jj]=Fp.Fp_add (Fp.Fp_pow(C[jj-
1],2),Fp.Fp_mul(A_B,EIGHT).negate()); 
             B[jj]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[jj-1], 
                                          
Fp.Fp_add(A[jj],Fp.Fp_mul(FOUR,A_B).negate())).negate()); 
          }     
        for (int ii = 0;ii<k ;ii++) 
            FB= Fp.Fp_mul(FB,B[ii]); 
        FB=Fp.Fp_mul(FB,Fp.Fp_pow(TWO,k)); 
        T= Fp.Fp_inv( FB); 
        T_2=Fp.Fp_pow(T,2); 
        P2.x.val=Fp.Fp_mul(A[k],T_2) ; 
        P2.y.val=Fp.Fp_mul(B[k],Fp.Fp_mul(T_2,T)) ; 
     } 
     return P2; 
 } 
 public ECPoint D_Mu(ECPoint Q,ECPoint P1,int k1, int k2 ) { 
     ECPointFp P2 = new ECPointFp(); 
     BigInteger[] A,B,C; 
     BigInteger DK,FB,RB,BK_2,U, BK_4,BK_S,CK_S,BK_T4,T,T_2,A_B 
         ,t,s,m,x,y,FB_2,s_2,t_B,s_A,d; 
     DK=ZERO; 
     s_2=ONE; 
     s=ONE; 
     FB=ONE; 
     BK_4=ONE; 
     A=new BigInteger[Pre_Table.Win+1]; 
     B=new BigInteger[Pre_Table.Win+1]; 
     C=new BigInteger[Pre_Table.Win+1]; 
     U=ONE; 
     if ((Q.isZero())||(Q.y.isZero())) { 
      A[0]=P1.x.val; 
      B[0]=P1.y.val; 
      d = a4.val; 
    } 
   else { 
     x=P1.x.val; 
     y=P1.y.val; 
     A[0]=Q.x.val; 
     B[0]=(Q.y.val); 
        for (int jj = 1; jj <= k1 ; jj++) { 
             if (jj == 1) 
               U = a4.val; 
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             else if (jj > 1) 
               U = Fp.Fp_mul(U, BK_4); 
             C[jj-1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[jj-1], 2)), 
                                           Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, jj-1), U)); 
             BK_2=Fp.Fp_mul(B[jj-1],B[jj-1]); 
             BK_4=Fp.Fp_mul(BK_2,BK_2); 
             A_B=Fp.Fp_mul(A[jj-1],BK_2); 
             A[jj]=Fp.Fp_add (Fp.Fp_pow(C[jj-
1],2),Fp.Fp_mul(A_B,EIGHT).negate()); 
             B[jj]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[jj-1], 
                                         
Fp.Fp_add(A[jj],Fp.Fp_mul(FOUR,A_B).negate())).negate()); 
          } 
          for (int ii = 0;ii<k1 ;ii++) 
                FB= Fp.Fp_mul(FB,B[ii]); 
          FB=Fp.Fp_mul(FB,Fp.Fp_pow(TWO,k1)); 
          FB_2=Fp.Fp_mul(FB,FB); 
          s_A=Fp.Fp_mul(FB_2,x); 
          if (A[k1].compareTo(s_A) != 0){ 
             s=Fp.Fp_add(A[k1],s_A.negate()); 
             t_B=Fp.Fp_mul(Fp.Fp_mul(FB_2,FB),y); 
             t=Fp.Fp_add(B[k1],t_B.negate()); 
             s=Fp.Fp_add(A[k1],s_A.negate()); 
             m=Fp.Fp_add(A[k1],s_A); 
             s_2=Fp.Fp_mul(s,s); 
            A[0]=Fp.Fp_add(Fp.Fp_mul(t,t),Fp.Fp_mul(m,s_2).negate()) ; 
            
B[0]=Fp.Fp_add(Fp.Fp_mul(Fp.Fp_mul(s,s_2),t_B),Fp.Fp_mul(t,Fp.Fp_add   
                                  (A[0],Fp.Fp_mul (s_2,s_A).negate()))).negate(); 
            d = Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, k1), Fp.Fp_mul (Fp.Fp_mul(  
                                 U,Fp.Fp_mul(s_2,s_2)), BK_4)); 
           } 
          else { 
              U = Fp.Fp_mul(U, BK_4); 
              C[k1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[k1], 2)), 
Fp.Fp_mul  
                                              (Fp.Fp_pow (SIXTEEN, k1), U)); 
              BK_2=Fp.Fp_mul(B[k1],B[k1]); 
              BK_4=Fp.Fp_mul(BK_2,BK_2); 
              A_B=Fp.Fp_mul(A[k1],BK_2); 
              A[0]=Fp.Fp_add 
(Fp.Fp_pow(C[k1],2),Fp.Fp_mul(A_B,EIGHT).negate()); 
              B[0]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[k1], 
                              Fp.Fp_add(A[0],Fp.Fp_mul (FOUR,A_B).negate())).negate()); 
              s=Fp.Fp_mul(B[k1],TWO); 
              d = Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, k1+1),Fp.Fp_mul(U, BK_4)); 
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          } 
   } 
          for (int jj = 1; jj <= k2 ; jj++) { 
                  if (jj == 1)  U = d; 
                     else if (jj > 1) U = Fp.Fp_mul(U, BK_4); 
              C[jj-1] = Fp.Fp_add(Fp.Fp_mul(THREE, Fp.Fp_pow(A[jj-1],2)), 
                                                Fp.Fp_mul(Fp.Fp_pow(SIXTEEN, jj-1), U)); 
              BK_2=Fp.Fp_mul(B[jj-1],B[jj-1]); 
              BK_4=Fp.Fp_mul(BK_2,BK_2); 
             A_B=Fp.Fp_mul(A[jj-1],BK_2); 
             A[jj]=Fp.Fp_add (Fp.Fp_pow(C[jj-
1],2),Fp.Fp_mul(A_B,EIGHT).negate()); 
             B[jj]=Fp.Fp_add(Fp.Fp_mul(EIGHT,BK_4).negate(),Fp.Fp_mul(C[jj-1],  
 
 
              Fp.Fp_add (A[jj],Fp.Fp_mul(FOUR,A_B).negate())).negate()); 
                    } 
 
        for (int ii = 0;ii<k2 ;ii++) 
            FB= Fp.Fp_mul(FB,B[ii]); 
        FB=Fp.Fp_mul(FB,Fp.Fp_pow(TWO,k2)); 
        FB=Fp.Fp_mul(FB,s); 
        T= Fp.Fp_inv( FB); 
        T_2=Fp.Fp_pow(T,2); 
        P2.x.val=Fp.Fp_mul(A[k2],T_2) ; 
        P2.y.val=Fp.Fp_mul(B[k2],Fp.Fp_mul(T_2,T)) ; 
     return P2; 
 } 
   protected Object clone() { 
    return new ECurveFp( (Fp) a4, (Fp) a6); 
  } 
} 
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